

LB MINERALS, s.r.o.

Safety Data Sheet in accordance with Regulation (EC) No 1907/2006 and Regulation (EC) No 1272/2008 Version 09.0

Revision date September 2023

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Kieselguhr, flux-calcined

REACH Registration number: 01-2119488518-22-0003

Reference date: 25/10/2010 17:56

Trade names:

Material	Identification
MF CK05 M	Filter kieselguhr F 5
MF CK10 M	Filter kieselguhr F 10
MF CK15 M	Filter kieselguhr F 15
MF CK20 M	Filter kieselguhr F 20
MF CK25 M	Filter kieselguhr F 25
MF CK50 M	Filter kieselguhr F 50
MF CK60 M	Filter kieselguhr F 60
MF CK70 M	Filter kieselguhr F 70
MF CK100 M	Filter kieselguhr F 100

Other identification means: diatomaceous earth, diatomite

1.2. Relevant identified uses of the substance or mixture uses advised against

The substance is used for various purposes, especially in the production of:

- Fillers
- Excipient not listed anywhere else
- Filter material
- Laboratory chemical
- Agent to control pH
- Plating compositions for treating metal surfaces
- Solvents
- Filter agent
- Functional filler
- Functional additive
- Industrial professional and private

1.2.1. Identified uses specified

Industrial, professional and consumer use.

1.2.2. Uses advised against

No use specified in section 1.2 is inadvisable.

1.3. Details of the supplier of the Material Safety Data Sheet

Name:	
Address:	
Phone number:	
Identification number (CRN)/VAT Reg No:	
E-mail of a competent person responsible for MSDS in th	he
Member States and the EU:	

LB MINERALS, s.r.o. <u>www.lb-minerals.cz</u> Tovarni 431, CZ 330 12 Horni Briza +420 378 071 111 27994929/CZ27994929

msds@lb-minerals.cz

Material Safety data Sheet for kieselguhr, flux-calcined (RCS < 1 %) – November 2010 Page 2/8

1.4. Emergency telephone number

Single European emergency number: Emergency telephone number Available outside the office hours: 112 National Health Service (NHS) 111 ⊠ Yes

🛛 No

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Classification pursuant to Regulation (EC) No. 1272/2008: Not classified as hazardous See section 16 for the full text of the classifications and hazard statements.

2.2. Label elements

None

2.3. Other hazards

This product is an inorganic substance and does not meet the criteria for PBT or vPvB in accordance with Annex XIII of regulation (EC) No 1907/2006 (REACH). The substance is not considered to be an endocrine disruptor for human health or the environment in accordance with Annex I of Regulation (EC) No. 1272/2008 (CLP). Depending on the application and processing method, airborne dust containing RCS may be formed.

SECTION 3: Composition/information on ingredients

3.1. Substances

Identification No.		Name of substance
CAS number:	68855-54-9	Kieselguhr, flux-calcined
EC number:	272-489-0	

Kieselguhr, flux-calcined is UVCB, subtype 4. The product purity is 100 wt. %. This product contains less than 1% of respirable silica (RCS), which is classified as STOT RE 1.

SECTION 4: First aid measures

4.1. Description of first aid measures

Pay attention to your own safety. No special personal protective equipment is recommended for first aid personnel.

Following inhalation

It is recommended to move the affected persons from the area to fresh air. If the problem persists, seek a medical advice.

Following skin contact

Wash the skin with water and soap and use protective ointment.

Following eye contact

Rinse with a large amount of water and seek medical attention if irritation persists.

Following ingestion

Rinse mouth with a large amount of water. Do not induce vomiting.

4.2. Most important symptoms and effects, both acute and delayed

The acute symptoms would give pain in the eyes because of dust entry. No delayed effects are anticipated if first aid treatment is applied and is effective.

4.3. Indication of immediate medical attention and special treatment needed

Immediate medical attention is not required; follow the instructions in section 4.1.

SECTION 5: Firefighting measures

5.1. Extinguishing media

Adapt the fire extinguishing agent to the fire surroundings.

5.2. Special hazards arising from the substance or mixture

The material is not flammable, and it does not lead to hazardous thermal decomposition products.

5.3. Advice for fire-fighters

Avoid generation of dust. Use breathing apparatus. Self-contained breathing apparatus may be required due to other substances but is not required due to possible exposure to kieselguhr.

Use extinguishing measures that are appropriate to local circumstances and the surrounding environment. Product on floor when wetted will become slippery and may present a hazard; wear anti-slip boots.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment, and emergency procedures

Avoid the formation of airborne dust, wear personal protective equipment in accordance with local legislation, and see EN 143.

6.2. Environmental precautions

Prevent the spread of leaked material. Remove leaked material with suction systems.

6.3. Methods and materials for containment and cleaning up

Avoid sweeping and ensure disposal without any airborne dust formation. Store it in suitable closed containers. Torn packages must be taped or wrapped in another package. Wear personal protective equipment in accordance with the local regulations.

6.4. Reference to other sections

See sections 8 and 13 of this MSDS.

SECTION 7: Handling and storage

7.1. Safe handling measures

7.1.1. Recommendations

Keep dust concentrations to a minimum. Minimize dust formation.

In places where airborne dust forms, use suitable exhaust ventilation. The packed product should be handled with care to prevent accidental bursting. Spilled powder should be removed by vacuuming or wet sweeping. To advise on the safe handling, please contact your supplier or check the Good Practice Guide which is referred to in section 16.

7.1.2. Advice on general occupational hygiene

Not drink, eat, and smoke at the workplace. Wash your hands and change contaminated clothing before entering dining room.

7.2 Conditions for safe storage, including any incompatibilities

Minimise airborne dust formation. Keep shipping containers closed and prevent wind blowing during loading and unloading. Store in a dry place protected from moisture. Do not store petroleum substances, oils, or chemicals that have a characteristic odour/smell near the product due to the high diatomaceous earth sorption capacity. If the product is stored in a dry covered place, it can be stored indefinitely. Its storage temperature is not prescribed. Pallets cannot be stacked.

7.3. Specific end Use(s)

Exposure scenarios for humans and the environment are attached in Annex I to this Material Safety Data Sheet.

SECTION 8: Exposure controls/ personal protection

8.1. Control parameters

8.1.1. Occupational exposure limit values

Follow workplace regulatory exposure limits for all types of airborne dust (e.g. total dust, respirable dust, respirable crystalline silica dust).

The occupational exposure limit values (OEL) in the Czech Republic are set by Government Decree No. 361/2007 Coll. on requirements for occupational health protection (measured as the 8-hour time-weighted average):

Material Safety data Sheet for kieselguhr, flux-calcined (RCS < 1 %) – November 2010 Page 4/8

Substance (ingredient) name	Туре	Value (mg*m ⁻³)
Other silicates (excluding asbestos)	OEL r */ OEL t * SiO₂ content in respirable fraction ≤ 5% (valid in the CZ)	2 / 10
	OELr^{**}/OEL c ** SiO ₂ content in respirable fraction > 5% (valid in the CZ)	10 : F _r / 10

 $F_{\rm r}-Fibrogenic$ component content in the respirable fraction in %

The permissible RCS exposure limit can be specified by the national legislation of the EU Member State.

8.1.2. Recommended monitoring procedures

None.

8.1.3. Occupational Exposure Limits and/or biological limits when forming air pollutants

Not applicable.

8.1.4. DNEL/DMEL and PNEC

DNEL/DMEL

Route of exposure Exposure frequency		DNEL (employees)
Inhalation	Prolonged repetitive	0.05 mg/m ³

Route of exposure Exposure frequency		DNEL (population)
Inhalation	Prolonged repetitive	0.05 mg/m ³
Oral Prolonged repetitive		18.7 mg/kg/ body weight /day

PNECS

Environment	PNEC	Remarks
		LC ₅₀ studies for fish, daphnia, and algae in a supersaturated solution
Water (surface water)	n/a	>100 vol.% (i.e. higher concentration than the maximum solubility of
		the substance).
WWTP microorganisms	100	NOAEL value (AF = 100)
Terrestrial	n/a	Naturally occurring inert substance
Sediment	n/a	Naturally occurring inert substance

8.2. Exposure controls

Reference to Exposure Scenario in Annex I of this MSDS.

8.2.1. Appropriate engineering controls

Reference to Exposure Scenarios in Annex I of this MSDS.

8.2.2. Individual protection measures, such as personal protective equipment

Eye/face protection

Do not wear contact lenses. For powders, tight fitting goggles with side shields, or wide vision full goggles. It is also advisable to have individual pocket eyewash.

Skin/hands protection

For skin, normal work clothes are appropriate. After finishing work, wash the skin with soap and water, or use a greasy cream - the products may dry the skin.

Respiratory protection

In case of prolonged exposure to airborne dust concentrations, wear respiratory protective equipment with the requirements of national legislation is recommended.

Thermal hazards

None

8.2.3. Environmental exposure controls

Avoid any release into the environment. Avoid any leaked product spreading.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

	-
Physical state	Solid
Colour	White, beige, ochre, light grey
Odour	Odourless
Melting point/freezing point	> 450 °C (EU A1 method)
Boiling point or initial boiling point and boiling range	Not applicable to solids
Flammability	Substance is not flammable
Lower and upper explosion limit	Not applicable to solids
Flash point	Not applicable to solids
Auto-ignition temperature	Not applicable to solids
Decomposition temperature	Not applicable to solids
pH (20°C) suspension – 1 part dry matter : 7	6 – 9
Kinematic viscosity	Not applicable to solids
Solubility	Low, max 3.7 mg/l (EU A6 method)
Partition coefficient: n-octanol/water (log value)	Not applicable to solids
Vapour pressure	Not applicable to solids
Density and/or relative density	Not applicable to solids
Relative vapour density	2,360 kg/m ³ (OECD 109 method)
Particle characteristics	Solid particles, granules, rest on screen max. 15% (0.045 mm), does not contain a nanoform as defined in Annex VI of Regulation REACH

9.2. Other information

Bulk density	200 - 350 kg/m ³

SECTION 10: Stability and reactivity 10.1. Reactivity Inert, not reactive **Chemical stability** Chemically stable under normal conditions. 10.2. 10.3. Possibility of hazardous reactions Products may react violently with hydrofluoric acid and its products. 10.4. **Conditions to avoid** None Hydrofluoric acid products 10.5. Incompatible materials Hazardous decomposition products 10.6. None

SECTION 11: Toxicological information

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

Hazard classes	Outcome of the effect assessments	
Acute toxicity		
Oral	LD ₅₀ > 2000 mg/kg body weight (OECD 401, rat)	
Dermal Based on the available data, the classification criteria are not met.		
Inhalation $LC_{50} > 2,6 mg/l$ (4h) (OECD 403, rat)		
Skin corrosion/irritation Kieselguhr does not irritate the skin (OECD 431)		
Serious eye damage/irritation	Kieselguhr does not irritate the eyes (HCE, SkinEthic Laboratories, Nice,	
	France)	
Respiratory or skin sensitization	Kieselguhr does not cause skin sensitization (OECD 429, mouse)	
Germ cell mutagenicity	Kieselguhr does not mutagenic (in vitro test OECD 471, OECD 473, OECD 476)	
Carcinogenicity	Based on the available data, the classification criteria are not met.	
Reproductive toxicity	Based on the available data, the classification criteria are not met.	

Material Safety data Sheet for kieselguhr, flux-calcined (RCS < 1 %) – November 2010 Page 6/8

STOT - single exposure	Based on the available data, the classification criteria are not met.	
STOT - repeated exposure	STOT RE 1 (if the respirable silica content > 10%)see section 11.2STOT RE 2 (if the respirable silica content > 1% to < 10%)	
Aspiration hazard	Based on the available data, the classification criteria are not met.	

11.2. Information on other hazards

11.2.1. Endocrine disrupting properties

No data available

11.2.2. Other information

Repeated dose	Repeated dose toxicity		
Oral	NOAEL (rat, OECD 408)	3,737.9 mg/kg of body weight/day	
Inhalation	NOAEC (rat, OECD 413)	1.3 mg/m ³	
	NOEC (rat, OECD 413)	1.3 mg/m ³	
	LOAEC (rat, OECD 413a)	5.9 mg/m ³	
Dermal	-	Scientifically unjustified	

SECTION 12: Ecological information

12.1. Toxicity

12.1.1. Acute/short-term toxicity for fish	LC_{50} (96 h) for freshwater fish (rainbow trout Oncorhynchus mykiss): >100% v/v saturated solution (OECD 203 method)
12.1.2. Acute/short-term toxicity for aquatic invertebrates	EC ₅₀ (48 h) for aquatic invertebrates (Daphnia magna): > 100% v/v saturated solution (OECD 202 method)
<i>12.1.3.</i> Acute toxicity for aquatic plants	EC ₅₀ (72 h) for fresh water algae (Desmodesmus subspicatus): > 100% v/v saturated solution (OECD 201 method)
12.1.4. Toxicity for microorganisms, e.g. bacteria	EC ₅₀ (3 h) for microorganisms (activated sludge): > 1,000 mg/l (OECD method 209)
12.1.5. Chronic toxicity to aquatic organisms	No data available
12.1.6. Toxicity to soil dwelling organisms	No data available
12.1.7. Toxicity to terrestrial plants	No data available
12.1.8. General effect	No specific adverse effects known
12.2. Persistence and degradability	No data available
12.3. Bioaccumulative potential	No data available
12.4. Mobility in soil	Negligible
12.5. Results of PBT and vPvB assessment	This substance does not meet the criteria for classification as PBT or vPvB.
12.6. Endocrine disrupting properties	No data available
12.7. Other adverse effects	No other adverse effects are identified.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

The substance is not hazardous waste. The diatomaceous earth can be reused if it is not contaminated or otherwise damaged. Waste disposal methods are not applicable here.

Product treatment – unused remains or spilled material

Collect dry unused remains or spilled dry material. The material can be reused, taking into consideration its shelf life and the requirement to prevent dustiness.

In case of any product contamination, liquidate it in line with the waste legislation. Prevent its penetration into any wastewater system.

Further details are provided in the Exposure Scenario - see Annex I.

Packaging treatment - completely empty, remove in accordance with the applicable legislation.

Waste legislation – Decree 2000/532/EC establishing a list of wastes, as amended.

SECTION 14: Transport information

14.1.	UN number or ID number	Not relevant
14.2.	UN proper shipping name	Not relevant
14.3.	Transport hazard class(es)	ADR: Not classified IMDG: Not classified ICAO/IATA: Not classified RID: Not classified
14.4.	Packaging group	Not applicable
14.5.	Environmental hazards	Not relevant
14.6.	Special precautions for users	Not specified
14.7.	Maritime transport in bulk according to IMO	Not relevant

instruments

SECTION 15: Regulatory information

15.1. Safety, health, and environmental regulations/legislation specific for the substance or mixture

Regulation (EC) No **1907/2006** of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorization and Restriction of Chemicals, establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Regulation Council Regulation (EEC) No. 793/93, Commission Regulation (EC) No. 1488/94, Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC, and 2000/21/EC, as amended.

Regulation (EC) No **1272/2008** of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC and amending Regulation (EC) No. 1907/2006, as amended.

15.2. Chemical safety assessment

For this substance, the chemical safety assessment is provided in Annex I.

SECTION 16: Other information

16.1. Indication of changes made to the previous MSDS version

Regulation (EC) No 1272/2008 and Regulation (EC) No 453/2010

Version 7.1 - ch. 2.1.2 – removed, chap. 15.1

Version 07.2 - In full compliance with Regulation (EC) No 830/2015

Version 07.3 - trademark expansion and logo change

Version 08.0 - Change of 1.1, 8.1, 9.1, 9.2, 11.2, 13.1, 15.1, 16.3, and 16.7, most of the 16 sections were updated in accordance with revised Annex II to the REACH Decree

Version 08.1 - Change of 1.1

Version 09.0 – 2.1., 2.3., 7.1.1., 9.1., 11.2., 12.6., 14.1.

Reasons to change the safety data sheet version:

COMMISSION REGULATION (EU) 2020/878 of 18 June 2020 amending Annex II to Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH).

16.2. Abbreviations and acronyms

AF Assessment Factor

Material Safety data Sheet for kieselguhr, flux-calcined (RCS < 1 %) - November 2010

Page 8/8

.assalsbarj	daulita rit
DNEL	The concentration at which no adverse effects to human health occur
EC ₅₀	Median effective concentration
LC ₅₀	Median lethal concentration
LOAEC	Lowest-observed-adverse-effect concentration
NOAEC	No-observed-adverse-effect concentration
NOAEL	No-observed-adverse-effect level
NOEC	No-observed-effect concentration
OEL	Occupational exposure limit
OELc	Occupational exposure limit for total concentration
OELr	Occupational exposure limit for respirable dust fraction
PBT	Permanently Bioaccumulatively Toxic
PNEC	Safe concentration at which little or no effects on human health can be expected
RCS	Respirable Crystalline Silica
REACH	Regulation (EC) No 1907/2006
STOT RE	Toxicity for specific target organs - repeated
WWTP	Waste water treatment plant
vPvB	Very Persistent Very Bioaccumulative
UVCB	Substances of unknown or variable composition

16.3. **Relevant H-phrases (number and full text)**

EUH066: Repeated exposure may cause skin dryness or cracking.

EUH210: Safety data sheet available on request.

EUH212: Caution! Hazardous respirable dust may form during use. Do not inhale dust.

16.4. **Third Party Materials**

If materials not manufactured or supplied by LB MINERALS, s.r.o. are used in conjunction with materials from LB MINERALS, s.r.o, or instead of them, it is the responsibility of the customer to ensure that the manufacturer or supplier provides all technical data and other documents relating to those and other materials and ensure all necessary information relating to them. No responsibility with regard to the use of an LB MINERALS, s.r.o.'s material in conjunction with materials from other suppliers shall be accepted.

16.5. Liability

L^BMINER∆LS

The given information is the best that LB MINERALS, s.r.o has at that date and is believed to be accurate and reliable. However, no representation, warranty or guarantee of its accuracy, reliability or completeness exists. It is the user's responsibility to satisfy themselves as to the suitability and completeness of such information for their own particular use.

16.6. Training

Workers must be informed of the presence of crystalline silica and trained in the proper use and handling of this product, as required by the applicable regulations.

Additional information 16.7.

The permissible exposure limit for the total concentration (respirable fraction) of dust (particle size 1–100 μ m) is called PEL_c, for the respirable dust fraction PEL_r. The inhalable dust fraction is an aggregate of particles of airborne dust, which can be inhaled through the nose or mouth. Respirable fraction means the mass fraction of inhaled particles (size less than 5 µm) that penetrate the part of the airways where there is no ciliated epithelium and into the alveoli according to EN 1540 Occupational exposure - Terminology.

Prolonged or massive exposure to respirable fraction of crystalline silica may cause silicosis, which is a nodular pulmonary fibrosis caused by deposition of fine respirable crystalline silica particles in the lungs.

In 1997, IARC (International Agency for Research on Cancer) concluded that crystalline silica inhaled in the workplace may cause lung cancer in humans. They stressed, however, that not all industrial environments, nor all crystalline silica types, are to blame. (IARC Monograph on the assessment of risk of cancer in humans caused by chemicals, silicon, quartz dust and organic fibres, 1997, Vol. 68, IARC, Lyon, France.) In 2009, in the Monograph 100 series IARC confirmed its classification of powdered quartz, crystalline in form of quartz and cristobalite (IARC Monographs, Volume 100C, 2012).

In June 2003, the EU Scientific Committee on Occupational Exposure Limits to chemical agents (SCOEL) concluded that the main result of inhalation of respirable crystalline silica dust in humans is silicosis. "There is sufficient information to conclude that the relative lung cancer risk is increased in persons with silicosis (and it does not seem to occur in

Material Safety data Sheet for kieselguhr, flux-calcined (RCS < 1 %) – November 2010 Page 9/8

employees without silicosis exposed to silica dust in quarries and in the ceramic industry). Preventing silicosis thus at the same time reduces the risk of cancer ..." (SCOEL SUM Doc-94-final, June 2003). So there is evidence supporting the fact that increased carcinoma risk would be limited to people already suffering from silicosis. Protection of workers against silicosis should be assured by respecting the existing occupational exposure limits and implementing additional risk management measures where required (see Section 16 below).

Multisectoral Social Agreement on Workers Health Protection through the good handling and use of crystalline silica and products containing it, was signed on 25 April 2006. This autonomous agreement, which received a financial support from the European Commission, is based on the Good Practices Guide. The requirements of the Agreement came into force on 25 October 2006. The Agreement was published in the Official Journal of the European Union (2006/C 279/02). The text of the Agreement and its annexes, including the Good Practices Guide, are available at http://www.nepsi.eu and provide useful information and guidance for handling products that may release respirable crystalline silica. Literature references are available upon request with the EUROSIL Association, the European Association of Industrial Silica Producers.

<u>Disclaimer</u>

This Material Safety Data Sheet (MSDS) has been prepared in accordance with the legal provisions of the REACH Regulation (EC 1907/2006; Article 31 and Annex II), as amended. Its content is intended as a guide for appropriate precautionary measures when handling the material. The responsibility of recipients of this Material Safety Data Sheet is to ensure that the information contained therein is properly read and correctly understood by all personnel who may use or process the product, handle it or come into contact with it in any way. The information and instructions provided in this Material Safety Data Sheet is based on the present state of scientific and technical knowledge at the time of publication. This document does not assume responsibility for the technical design and processing of the material, suitability for specific applications, and does not replace legally valid contractual relationship. This version of the MSDS supersedes all previous versions.

End of the Material Safety Data Sheet

Annex I

Exposure Scenario 1: Manufacture of kieselguhr, flux-calcined

1. Short title of exposure scenario 1

Manufacture of kieselguhr, flux-calcined

2. Description of activities and processes covered in the exposure scenario

Sector of use SU 3: Industrial uses: uses of substances as such or in preparations at industrial sites.
Sector of use SU 3: Industrial uses: uses of substances as such or in preparations at industrial sites. (SU)
Product PC 0: (adsorbent, filling material)
category (PC) PC 14: Metal surface treatment products, including galvanic and electroplating products (This
covers substances permanently binding with the metal surface)
Process PROC 2: Use in closed, continuous process with occasional controlled exposure.
category PROC 3: Use in closed batch process
(PROC) PROC 4: Use in batch or other process where opportunity for exposure arises. Industrial setting
PROC 8b: Transfer of substance or preparation (charging/discharging) from/to vessels/large
containers at dedicated facilities.
PROC 9: Transfer of substance or preparation into small containers (dedicated filling line, including
weighing).
Article Not applicable
category (AC)
Environmental ERC 1: Manufacture of substances
release
category (ERC)
3. Operational conditions

3. 1 Operational condition related with frequency and quantities of use

Duration of	8 hours per day
exposure at	
workplace:	
Frequency of	5 days/week for each worker
exposure at	
workplace:	
Annual	The actual tonnage handled per shift is not considered to influence the exposure as such for this
amount used	scenario
per site:	
3.2 Operationa	l conditions related with substance/ product
Physical state	Solid ranging from a fine powder with high dustiness to coarser granules with low dustiness
Concentration	100% w/w
of substance	
in mixture	
3.3 Other releve	ant operational conditions
No information	about frequency and duration of the various tasks is available.
	ement Measures

Organisational measures	Local exhaust ventilation is installed at manufacturing sites. The employer has also to ascertain that the required PPE is available and used according to instructions.
Technical measures	Safe conditions were defined by considering local exhaust ventilation in the present scenario
Respiratory protection	Workers may use half-face masks (P2 or P3) with an efficiency of at least 90% in situations with elevated dust concentrations in the air.

Hand protection	Workers use gloves during the handling of the pure, solid substance
Eye protection	Workers use safety glasses during the handling of the pure, solid substance
Skin and body protection	Wearing of suitable protective clothing.
Hygiene measures	Standard occupational hygiene measures should be adopted.
4.2 RMMs relat	ed to the environment
Organisational measures	Waste gases are cleaned by passage through cyclones or scrubber units or by filtration with bag filters. Solid and liquid wastes are disposed of in landfills or may be incinerated
Abatement measures related with wastewater	The wastewater resulting from manufacturing of the substance can be treated by sedimentation to remove the solid parts of the substance. The sedimentation is very efficient with a reduction efficacy of 99% or more.
Abatement measures waste air and solid waste	It is recommended to pass waste gas through bag filters, scrubbers, or cyclones to reduce the amount of solid substance in the waste gas.
4.3 Waste relate	ed measures
Type of waste	Solid and liquid waste
Disposal technique	Solid and liquid wastes are disposed of in landfills or may be incinerated.
Fraction released to environment during waste treatment	Any wastewater released from the sedimentation step is expected not to contain more than 3.7 mg/L (saturated solution).
5. Prediction of	exposure resulting from the conditions described above and the substance properties.
5.1. Human exp	osure
Workers (oral)	Good hygiene practice will minimize oral exposure.
Workers (inhalation) DNEL: Worker, long-term, systemic, inhalation: 0.05 mg/m ³	The workers' inhalation exposure to kieselguhr, flux-calcined is estimated with the ECETOC TRA tool (ECETOC 2010). The assessment of exposure concentrations was performed with the three grades of dustiness that can be selected in the TRA tool: low, medium, and high. The modelled long-term exposure concentrations are compared to the DNEL for chronic inhalation exposure to obtain risk characterization ratios. RCRs above 1 indicate that the potential risk is not adequately controlled. Safe conditions of use are described in the table for all activities. It is concluded that the manufacture of solid kieselguhr, flux-calcined exhibiting different grades of dustiness is safe for workers under the specified conditions of exposure. This applies also to storage, repackaging and distribution of the substance. Safe conditions were defined by considering local exhaust ventilation in the present scenario. To achieve acceptable airborne concentrations of kieselguhr, flux-calcined the efficiency of LEV and the duration of exposure were modified. Safe conditions can also be achieved using personal respiratory equipment in addition or as an alternative to LEV. Consequently, the presentation of safe conditions is not exhaustive in the present ES.

				Contant	Inhalation	
Drocoss Cotogony		Duration	DDE	Content	exposure	DC
Process Category INDUSTRIAL USE WITI		Duration		(%)	(mg/m3)	RC
	1 3003				INESS	
 Use in closed process, no likelihood of exposure 	No	4 to 8	No	100	0.01	0.
2 – Use in closed, continuous	NO	4 10 8	NO	100	0.01	0.
process with occasional controlled						
	0.00/	4 + 0 9	No	100	0.1	2.
exposure	90%	4 to 8	NO	100	0.1	Ζ.
3 – Use in closed batch process	0.00/	4 + - 9	Na	100	0.1	2
(synthesis or formulation)	90%	4 to 8	No	100	0.1	2.
4 – Use in batch and other process						
(synthesis) where opportunity for	050/		Na	100	0.25	-
exposure arises	95%	Up to 1	No	100	0.25	5.
5 – Mixing or blending in batch						
processes (multistage and/or	050/			400	0.05	-
significant contact)	95%	Up to 1	No	100	0.25	5.
8a – Transfer of chemicals from/to						
vessels/ large containers at non	050/			100	0.05	-
dedicated facilities	95%	Up to 1	No	100	0.25	5.
8b – Transfer of chemicals from/to						
vessels/ large containers at	050/	11	N	100	0.25	-
dedicated facilities	95%	Up to 1	No	100	0.25	5.
9 – Transfer of chemicals into small	050/			100		
containers (dedicated filling line)	95%	Up to 1	No	100	0.2	4.
15 – Use of laboratory reagents in	050/			100	0.05	-
small scale laboratories	95%	4 to 8	No	100	0.25	5.
19 – Hand-mixing with intimate	050/	lin to 1	Na	100	0.25	-
contact (only PPE available INDUSTRIAL USE WITH S	95%	Up to 1	No	100	0.25	5.
1 – Use in closed process, no	SUDSIA				STINESS	
likelihood of exposure	No	4 to 8	No	100	0.01	0.
2 – Use in closed, continuous	NU	4 10 8	NO	100	0.01	0.
process with occasional controlled	90%	4 to 8	No	100	0.1	2.
exposure	90%	4 10 8	NO	100	0.1	Ζ.
3 – Use in closed batch process (synthesis or formulation)	80%	4 + 0 9	No	100	0.2	4
4 – Use in batch and other process	00%	4 to 8		100	0.2	4.
4 – Use in batch and other process (synthesis) where opportunity for						
(synthesis) where opportunity for exposure arises	95%	A to 9	No	100	0.25	5.
5 – Mixing or blending in batch	53%	4 to 8	110	100	0.25	5.
processes (multistage and/or						
significant contact)	0=0/	1 to 9	No	100	0.25	5.
8a – Transfer of chemicals from/to	95%	4 to 8	No	100	0.25	э.
vessels/ large containers at non dedicated facilities	95%	1 to 9	No	100	0.25	-
	93%	4 to 8	No	100	0.25	5.
8b – Transfer of chemicals from/to						
vessels/ large containers at	0=0/	1 +0 9	No	100	0.25	-
dedicated facilities	95%	4 to 8	No	100	0.25	5.
9 – Transfer of chemicals into small	050/	4 += 0	Nie	100	0.25	-
containers (dedicated filling line)	95%	4 to 8	No	100	0.25	5.
15 – Use of laboratory reagents in	50%	1 += 0	Nie	100	0.25	-
	N 110/.	4 to 8	No	100	0.25	5.
small scale laboratories 19 – Hand-mixing with intimate	30%	1 60 0				

	INDUSTRIAL USE WIT	H SUBS	TANCE EXIH	IIBITING	G LOW DUST	TINESS	
	1 – Use in closed process, no						
	likelihood of exposure	No	4 to 8	No	100	0.01	0.2
	2 – Use in closed, continuous						
	process with occasional controlled						
	exposure	No	4 to 8	No	100	0.01	0.2
	3 – Use in closed batch process						
	(synthesis or formulation)	No	4 to 8	No	100	0.1	2.0
	4 – Use in batch and other process						
	(synthesis) where opportunity for						
	exposure arises	50%	4 to 8	No	100	0.25	5.0
	5 – Mixing or blending in batch	00/0				0.20	0.0
	processes (multistage and/or						
	significant contact)	50%	4 to 8	No	100	0.25	5.0
	8a – Transfer of chemicals from/to	50%	4108	NO	100	0.25	5.0
	vessels/ large containers at non						
	dedicated facilities	50%	4 to 8	No	100	0.25	5.0
	8b – Transfer of chemicals from/to	50%	4 10 8	NO	100	0.25	5.0
	vessels/ large containers at	No	1 +0 9	No	100	0.1	2.0
	dedicated facilities	No	4 to 8	No	100	0.1	2.0
	9 – Transfer of chemicals into small	N	4 + - 0	N	100	0.1	2.0
	containers (dedicated filling line)	No	4 to 8	No	100	0.1	2.0
	15 – Use of laboratory reagents in	N	4 + - 0	NI.	400	0.4	2.0
	small scale laboratories	No	4 to 8	No	100	0.1	2.0
	19 – Hand-mixing with intimate						
	contact (only DDE available	50%	4 to 8	No	100	0.25	5.0
	contact (only PPE available						
Workers	Dermal exposure was not assessed, as			ated w	th dermal e	xposure.	
(dermal)	Dermal exposure was not assessed, as	no risk	s are anticip				
(dermal) Indirect	Dermal exposure was not assessed, as It is expected that emissions of kieselg	no risk guhr, flu	s are anticip x-calcined f	rom its	identified u	ses will not si	-
(dermal)	Dermal exposure was not assessed, as It is expected that emissions of kiesely increase the naturally occurring co	no risks guhr, flu	s are anticip x-calcined f ations of	rom its kieselgu	identified u Ihr or oth	ses will not si er compoun	ds in th
(dermal) Indirect exposure via the	Dermal exposure was not assessed, as It is expected that emissions of kiesele increase the naturally occurring co environment. The potential of kiesele	no risks guhr, flu oncentra guhr, flu	s are anticip x-calcined f ations of ix-calcined	rom its kieselgu for bioa	identified u Ihr or othe Iccumulation	ses will not si er compoun	ds in th
(dermal) Indirect exposure via	Dermal exposure was not assessed, as It is expected that emissions of kiesely increase the naturally occurring co	no risks guhr, flu oncentra guhr, flu	s are anticip x-calcined f ations of ix-calcined	rom its kieselgu for bioa	identified u Ihr or othe Iccumulation	ses will not si er compoun	ds in th
(dermal) Indirect exposure via the environment	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i	no risks guhr, flu oncentra guhr, flu s essent	s are anticip x-calcined f ations of x-calcined tially unavai	rom its kieselgu for bioa lable to	identified u hr or othe occumulation organisms.	ses will not si er compoun n is low. The	ds in th substanc
(dermal) Indirect exposure via the environment Consumer	Dermal exposure was not assessed, as It is expected that emissions of kiesele increase the naturally occurring co environment. The potential of kiesele	no risks guhr, flu oncentra guhr, flu s essent	s are anticip x-calcined f ations of x-calcined tially unavai	rom its kieselgu for bioa lable to	identified u hr or othe occumulation organisms.	ses will not si er compoun n is low. The	ds in th substanc
(dermal) Indirect exposure via the environment Consumer exposure	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result	no risks guhr, flu oncentra guhr, flu s essent	s are anticip x-calcined f ations of x-calcined tially unavai	rom its kieselgu for bioa lable to	identified u hr or othe occumulation organisms.	ses will not si er compoun n is low. The	ds in th substanc
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment)	no risk: guhr, flu guhr, flu s essent	s are anticip x-calcined f ations of ix-calcined tially unavai n the manuf	rom its kieselgu for bioa lable to acture	identified u ihr or oth occumulation organisms. of kieselguh	ses will not si er compoun n is low. The r, flux-calcine	ds in th substanc d.
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring	no risk: guhr, flu guhr, flu s essent ing from data, wa	s are anticip x-calcined f ations of ix-calcined tially unavain the manuf	rom its kieselgu for bioa lable to acture	identified u uhr or otho occumulation organisms. of kieselguhi at manufact	ses will not si er compoun n is low. The r, flux-calcine turing sites m	ds in th substanc d. ay contai
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring up to 100 mg kieselguhr, flux-calcined	no risk: guhr, flu oncentr. guhr, flu s essent ing from data, wa	s are anticip x-calcined f ations of ix-calcined tially unavai to the manuf astewater re er. This is ex	rom its kieselgu for bioa lable to acture o eleased kceedin	identified u uhr or otho organisms. of kieselguh at manufact g the amour	ses will not si er compound n is low. The r, flux-calcine turing sites m nt that can be	ds in th substanc d. ay contai
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation	no risk: guhr, flu oncentra guhr, flu s essent ing from data, wa l per lite (3.7 mg	s are anticip x-calcined f ations of x-calcined tially unavai the manuf astewater re er. This is ex g/L at 20°C	rom its kieselgu for bioa lable to acture eleased (ceedin c), indic	identified u uhr or othe occumulation organisms. of kieselguh at manufact g the amour ating that	ses will not si er compound n is low. The r, flux-calcine turing sites m nt that can be suspended p	ds in th substanc d. ay contai e dissolve articles c
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre-	no risks guhr, flu oncentra guhr, flu s essent ing from data, wa l per lite (3.7 m sent in	s are anticip x-calcined f ations of tx-calcined tially unavai the manuf astewater ro er. This is ex g/L at 20°C the waste	rom its kieselgu for bioa lable to acture eleased ceedin c), indic water.	identified u uhr or othe occumulation organisms. of kieselguhn at manufact g the amour sating that Before ente	ses will not si er compound n is low. The r, flux-calcine turing sites m nt that can be suspended p ering the loc	ds in th substanc d. ay contai e dissolve articles c al sewag
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre treatment plant (STP), the wastewa	no risk: guhr, flu poncentr. guhr, flu s essent ing from data, wa l per lite (3.7 mg sent in ter resu	x-calcined f ations of ix-calcined tially unavain the manuf astewater re er. This is ex g/L at 20°C the waste ulting from	rom its kieselgu for bioa lable to acture of celeased (ceedin (c), indic water. manuf	identified u uhr or othe occumulation organisms. of kieselguhe at manufact g the amour cating that Before ente acturing of	ses will not si er compound n is low. The r, flux-calcine turing sites m nt that can be suspended p ering the loc the substan	ds in th substanc d. ay contai e dissolve articles c al sewag ce can b
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre- treatment plant (STP), the wastewa treated by sedimentation to remove t	no risk: guhr, flu oncentr. guhr, flu s essent ing from data, wa l per lite (3.7 m (sent in ter resu the solic	x-calcined f ations of ix-calcined tially unavai to the manuf astewater re er. This is ex g/L at 20°C the waste ulting from d parts of k	rom its kieselgu for bioa lable to acture (eleased (ceedin (), indic water. manuf ieselguh	identified u ihr or othe occumulation organisms. of kieselguhe at manufact g the amour ating that Before ente acturing of ar, flux-calcie	ses will not si er compound n is low. The r, flux-calcine turing sites m nt that can be suspended p ering the loc the substan ned. The sedi	ds in th substanc d. ay contai e dissolve articles c al sewag ce can b mentatio
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre treatment plant (STP), the wastewa	no risk: guhr, flu oncentr. guhr, flu s essent ing from data, wa l per lite (3.7 m (sent in ter resu the solic	x-calcined f ations of ix-calcined tially unavai to the manuf astewater re er. This is ex g/L at 20°C the waste ulting from d parts of k	rom its kieselgu for bioa lable to acture (eleased (ceedin (), indic water. manuf ieselguh	identified u ihr or othe occumulation organisms. of kieselguhe at manufact g the amour ating that Before ente acturing of ar, flux-calcie	ses will not si er compound n is low. The r, flux-calcine turing sites m nt that can be suspended p ering the loc the substan ned. The sedi	ds in th substanc d. ay contai e dissolve articles c al sewag ce can b mentatio
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre- treatment plant (STP), the wastewa treated by sedimentation to remove t	no risk: guhr, flu oncentr. guhr, flu s essent ing from data, wa l per lite (3.7 mg (3.7 mg sent in ter resu ter resu ter solic ficacy o	x-calcined f ations of ix-calcined tially unavai to the manuf astewater re er. This is ex g/L at 20°C the waste ulting from d parts of k f 99% or r	rom its kieselgu for bioa lable to acture o eleased (ceedin (), indic water manuf ieselguł nore. A	identified u ihr or othe organisms. of kieselguh at manufact g the amour ating that Before ente acturing of ar, flux-calcin ny wastewa	ses will not si er compound n is low. The r, flux-calcine turing sites m nt that can be suspended p ering the loc the substan ned. The sedi ater released	ds in th substanc d. ay contai e dissolve articles c al sewag ce can b mentatio from th
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre treatment plant (STP), the wastewa treated by sedimentation to remove t is very efficient with a reduction efficient	no risk: guhr, flu oncentra guhr, flu s essent ing from data, wa l per lite (3.7 mg (3.7 mg sent in ter resu the solic ficacy o ntain no	s are anticip x-calcined f ations of ix-calcined tially unavai to the manuf astewater re er. This is ex g/L at 20°C the waste ulting from d parts of k if 99% or r o more tha	rom its kieselgu for bioa lable to acture o acture o ceedin (ceedin (c), indic water. manuf ieselguh nore. A n 3.7 m	identified u uhr or othe organisms. of kieselguhr at manufact g the amour ating that Before ente acturing of nr, flux-calcin ny wastewa g kieselguhr	ses will not si er compound n is low. The r, flux-calcine turing sites m t that can be suspended p ering the loc the substan ned. The sedi ater released r, flux-calcine	ds in th substanc d. ay contai e dissolve articles c al sewag ce can b mentatio from th d per lite
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre treatment plant (STP), the wastewa treated by sedimentation to remove to is very efficient with a reduction efficient sedimentation step is expected to co	no risk: guhr, flu pricentri- guhr, flu s essent ing from data, wa l per lite (3.7 m sent in ter resu che solic ficacy o ntain no furthe	s are anticip x-calcined f ations of x-calcined tially unavai to the manuf astewater re g/L at 20°C the waste ulting from d parts of k of 99% or r o more tha r degradat	rom its kieselgu for bioa lable to acture o acture o celeased (ceedin c), indic water. manuf ieselguh nore. A n 3.7 m ion of	identified u ihr or othe iccumulation organisms. of kieselguhn at manufact g the amour cating that Before ente acturing of ar, flux-calcin or, flux-calcin org kieselguhn the substar	ses will not si er compound n is low. The r, flux-calcine turing sites m nt that can be suspended p ering the loc the substan ned. The sedi ater released r, flux-calcine nce during w	ds in th substanc d. ay contai e dissolve articles c al sewag ce can b mentatio from th d per lite vastewate
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring of up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre- treatment plant (STP), the wastewa treated by sedimentation to remove to is very efficient with a reduction efficient sedimentation step is expected to co wastewater (saturated solution). No	no risks guhr, flu oncentra guhr, flu s essent ing from data, wa l per lite (3.7 m sent in ter resu the solic ficacy o ntain no ficacy o ntain no furthe t assess	s are anticip x-calcined f ations of ix-calcined tially unavain the manuf astewater re- er. This is ex- g/L at 20°C the waster ulting from d parts of k of 99% or r o more tha r degradat ment and t	rom its kieselgu for bioa lable to acture o acture o celeased (ceedin, c), indic water. manuf ieselguh nore. A n 3.7 m ion of he reas	identified u ihr or othe organisms. of kieselguhe at manufact g the amour cating that Before ente acturing of ar, flux-calcin iny wastewa g kieselguhe the substar onable wors	ses will not si er compound n is low. The r, flux-calcine turing sites m nt that can be suspended p ering the loc the substan ned. The sedi ater released r, flux-calcine nce during w	ds in th substance d. ay contai e dissolve articles c al sewag ce can b mentatio from th d per lite vastewate
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants (WWTP)	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre treatment plant (STP), the wastewa treated by sedimentation to remove t is very efficient with a reduction efficient sedimentation step is expected to co wastewater (saturated solution). No treatment is considered in the presen kieselguhr, flux-calcined in the effluen	no risk: guhr, flu oncentra guhr, flu s essent ing from data, wa l per lite (3.7 mg sent in ter resu the solic ficacy o ntain no furthe t assess t of a lo	x-calcined f ations of x-calcined f ix-calcined tially unavai to the manuf astewater re astewater re g/L at 20°C the waste ulting from d parts of k if 99% or r o more tha r degradat ment and t cal STP is 3.	rom its kieselgu for bioa lable to acture o eleased (ceedin c), indic water. manuf ieselguh nore. A n 3.7 m ion of he reas 7 mg/L.	identified u ihr or othe iccumulation organisms. of kieselguhe at manufact g the amour ating that Before ente acturing of ar, flux-calcin ny wastewa ig kieselguhe the substar onable wors	ses will not si er compoun- n is low. The r, flux-calcine turing sites m nt that can be suspended p ering the loc the substan ned. The sedi ater released r, flux-calcine nce during w st-case conce	ds in th substanc d. ay contai e dissolve articles c al sewag ce can b mentatio from th d per lite vastewate ntration c
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants (WWTP)	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring of up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre- treatment plant (STP), the wastewa treated by sedimentation to remove to is very efficient with a reduction efficient sedimentation step is expected to co wastewater (saturated solution). No treatment is considered in the presen kieselguhr, flux-calcined in the effluen To calculate the reasonable worst-case	no risk: guhr, flu oncentra guhr, flu s essent ing from data, wa l per lite (3.7 mg sent in ter resu the solic ficacy o ntain no ficacy o ntain no furthe t assess t of a lo se conco	s are anticip x-calcined f ations of x-calcined tially unavai to the manuf astewater re g/L at 20°C the waste ulting from d parts of k f 99% or r o more tha r degradat ment and t cal STP is 3. entration o	rom its kieselgu for bioa lable to acture o acture o celeased (ceedin coe of water. manuf ieselguh nore. A n 3.7 m ion of he reas 7 mg/L. f kieselg	identified u ihr or othe organisms. of kieselguhe at manufact g the amour cating that Before ente acturing of ar, flux-calcie any wastewa g kieselguhe the substar onable wors	ses will not si er compound n is low. The r, flux-calcine turing sites m that can be suspended p ering the loc the substan ned. The sedi ater released r, flux-calcine nee during w st-case conce	ds in th substanc d. d. ay contai e dissolve articles c al sewag ce can b mentatio from th d per lite vastewate ntration c
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants (WWTP) Aquatic pelagic	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring of up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre- treatment plant (STP), the wastewa treated by sedimentation to remove t is very efficient with a reduction efficient sedimentation step is expected to co wastewater (saturated solution). No treatment is considered in the presen kieselguhr, flux-calcined in the effluen To calculate the reasonable worst-case that may be due to emissions from	no risk: guhr, flu oncentra guhr, flu s essent ing from data, wa l per lite (3.7 m sent in ter resu the solic ficacy o ntain no ficacy o ntain no	s are anticip x-calcined f ations of tx-calcined tially unavai to the manuf astewater re g/L at 20°C the waste ulting from d parts of k of 99% or r o more tha r degradat ment and t cal STP is 3. entration o nufacture o	rom its kieselgu for bioa lable to acture o eleased (ceedin c), indic water. manuf ieselguh nore. A n 3.7 m ion of he reas 7 mg/L. f kieselg f the s	identified u ihr or othe organisms. of kieselguhe at manufact g the amour cating that Before ente acturing of ar, flux-calcin iny wastewa g kieselguhe the substar onable wors guhr, flux-ca ubstance, th	ses will not si er compound n is low. The r, flux-calcine turing sites m nt that can be suspended p ering the loc the substan ned. The sedi ater released r, flux-calcine nce during w st-case concer- licined in sur-	ds in th substanc d. d. ay contai e dissolve articles c al sewag ce can b mentatio from th d per lite vastewate ntration c face wate cion of 3.
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants (WWTP)	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is resulti- ntal exposure (qualitative assessment) According to unpublished monitoring of up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre- treatment plant (STP), the wastewa treated by sedimentation to remove to is very efficient with a reduction effi- sedimentation step is expected to co wastewater (saturated solution). No treatment is considered in the presen kieselguhr, flux-calcined in the effluen To calculate the reasonable worst-case that may be due to emissions from mg/L in the effluent of the local STP is	no risks guhr, flu poncentra guhr, flu s essent ing from data, wa l per lite (3.7 m sent in ter resu the solic ficacy o ntain no ficacy o ficacy o ntain no ficacy o ficacy o ntain no ficacy o ficacy o	s are anticip x-calcined f ations of ix-calcined tially unavai to the manuf astewater re- er. This is ex- g/L at 20°C the waste ulting from d parts of k of 99% or r o more tha r degradat ment and t cal STP is 3. entration o nufacture c and a dilution	rom its kieselgu for bioa lable to acture o eleased (ceedin c), indic water. manuf ieselguh more. A n 3.7 m ion of he reas 7 mg/L. f kieselg f the s on facto	identified u ihr or othe organisms. of kieselguhe at manufact g the amour cating that Before ente acturing of ar, flux-calcin iny wastewa g kieselguhe the substar onable wors guhr, flux-ca ubstance, th or of 10 is ta	ses will not si er compound n is low. The r, flux-calcine turing sites m at that can be suspended p ering the loc the substan ned. The sedi ater released r, flux-calcine nee during w st-case concer- licined in sur-	ds in th substanc d. ay contai e dissolve articles c al sewag ce can b mentatio from th d per lite vastewate ntration c face wate cion of 3. punt at th
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants (WWTP) Aquatic pelagic	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre- treatment plant (STP), the wastewa treated by sedimentation to remove t is very efficient with a reduction eff sedimentation step is expected to co wastewater (saturated solution). No treatment is considered in the presen kieselguhr, flux-calcined in the effluen To calculate the reasonable worst-case that may be due to emissions from mg/L in the effluent of the local STP is point of mixing of the wastewater wit	no risks guhr, flu poncentra guhr, flu s essent ing from data, wa l per lite (3.7 m ter resu the solic ficacy o ntain no furthe t assess t of a lo se conce the mai s taken i h surfac	s are anticip x-calcined f ations of ix-calcined tially unavai tially unavai the manuf astewater re- er. This is ex- g/L at 20°C the waster ulting from d parts of k if 99% or r o more tha r degradat r degradat ment and t cal STP is 3. entration o nufacture c and a diluti- ce water (de	rom its kieselgu for bioa lable to acture o eleased cceedin c), indic water. manuf ieselguh nore. A n 3.7 m ion of he reas 7 mg/L. f kieselg f the si on facto efault E	identified u ihr or othe organisms. of kieselguhe at manufact g the amour ating that Before ente acturing of ar, flux-calcin ny wastewa g kieselguhe the substar onable wors guhr, flux-ca ubstance, th or of 10 is ta USES). This I	ses will not si er compound is low. The r, flux-calcine turing sites m at that can be suspended p ering the loc the substan ned. The sedi ater released r, flux-calcine nee during w st-case conce licined in sur- ne concentration ken into acco eads to a sur	ds in th substanc d. ay contai e dissolve articles c al sewag ce can b mentatio from th d per lite vastewate ntration c face wate cion of 3. pount at th face wate
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants (WWTP) Aquatic pelagic	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is result ntal exposure (qualitative assessment) According to unpublished monitoring up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre treatment plant (STP), the wastewa treated by sedimentation to remove t is very efficient with a reduction efficient sedimentation step is expected to co wastewater (saturated solution). No treatment is considered in the presen kieselguhr, flux-calcined in the effluen To calculate the reasonable worst-case that may be due to emissions from mg/L in the effluent of the local STP is point of mixing of the wastewater wit concentration of 0.37 mg/L. For release	no risk: guhr, flu oncentra guhr, flu s essent ing from data, wa l per lite (3.7 mg sent in ter resu the solic ficacy o ntain no ficacy o ntain no furthe t assess t of a lo se conce the mai s taken fa ses of th	s are anticip x-calcined f ations of ix-calcined tially unavai tially unavai to the manuf astewater re- er. This is ex- g/L at 20°C the waste ulting from d parts of k if 99% or r o more tha r degradat ment and t cal STP is 3. entration of nufacture of and a diluti- ce water (den ne wastewa	rom its kieselgu for bioa lable to acture o eleased cceedin c), indic water. manuf ieselguh nore. A n 3.7 m ion of he reas 7 mg/L. f kieselg f the s on facto efault E ter to c	identified u ihr or othe organisms. of kieselguhe at manufact g the amour ating that Before ente acturing of ar, flux-calcie iny wastewa g kieselguhe the substar onable wors guhr, flux-ca ubstance, th or of 10 is ta USES). This I oastal sites,	ses will not si er compound is low. The r, flux-calcine turing sites m at that can be suspended p ering the loc the substan ned. The sedi ater released r, flux-calcine nee during w st-case concer- licined in sur- ne concentration ken into acco eads to a sur a dilution fac	ds in th substanc d. d. ay contai e dissolve articles c al sewag ce can b mentatio from th d per lite vastewate ntration c face wate cion of 3. bunt at th face wate ctor of 10
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants (WWTP) Aquatic pelagic compartment	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is resulti- ntal exposure (qualitative assessment) According to unpublished monitoring of up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre- treatment plant (STP), the wastewar treated by sedimentation to remove to is very efficient with a reduction effi- sedimentation step is expected to co wastewater (saturated solution). No treatment is considered in the presen kieselguhr, flux-calcined in the effluen To calculate the reasonable worst-case that may be due to emissions from mg/L in the effluent of the local STP is point of mixing of the wastewater wit concentration of 0.37 mg/L. For release (EUSES default) is considered which lease	no risk: guhr, flu pricentra guhr, flu s essent ing from data, wa l per lite (3.7 m sent in ter resu the solid ficacy o ntain no ficacy o ficacy o	s are anticip x-calcined f ations of tx-calcined tially unavai to the manuf astewater re- er. This is ex- g/L at 20°C the waster ulting from d parts of k of 99% or r o more tha r degradat ment and t cal STP is 3. entration of nufacture of and a dilution ce wastewa concentrat	rom its kieselgu for bioa lable to acture o eleased (ceedin, c), indic water. manuf ieselguh nore. A n 3.7 m ion of he reas 7 mg/L. f kieselg f the s on facto efault El ter to c ion of 0	identified u ihr or othe organisms. of kieselguhe at manufact g the amour cating that Before ente acturing of ar, flux-calcin iny wastewa g kieselguhe the substar onable wors guhr, flux-ca ubstance, th or of 10 is ta USES). This I oastal sites, 0.037 mg/L ir	ses will not si er compound n is low. The r, flux-calcine turing sites m at that can be suspended p ering the loc the substan ned. The sedi ater released r, flux-calcine nee during w st-case concer- licined in sur- ne concentration ken into acco eads to a sur- a dilution fac	ds in th substanc d. d. ay contai e dissolve articles c al sewag ce can b mentatio from th d per lite vastewate ntration c face wate cion of 3. bunt at th face wate stor of 10 ers
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants (WWTP) Aquatic pelagic	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is resulti- ntal exposure (qualitative assessment) According to unpublished monitoring of up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre- treatment plant (STP), the wastewa treated by sedimentation to remove to is very efficient with a reduction effi- sedimentation step is expected to co wastewater (saturated solution). No treatment is considered in the presen kieselguhr, flux-calcined in the effluen To calculate the reasonable worst-case that may be due to emissions from mg/L in the effluent of the local STP is point of mixing of the wastewater wit concentration of 0.37 mg/L. For release (EUSES default) is considered which lease The wastewater released to the envir	no risk: guhr, flu oncentra guhr, flu s essent ing from data, wa l per lite (3.7 m sent in ter resu the solic ficacy o ntain no ficacy o ficacy o f	x-calcined f ations of ix-calcined f ix-calcined tially unavai to the manuf astewater re- er. This is ex- g/L at 20°C the waster alting from d parts of k of 99% or r o more tha r degradat ment and t cal STP is 3. entration o nufacture o and a dilution ce wastewa concentrat t may conta	rom its kieselgu for bioa lable to acture o eleased (ceedin, c), indic water. manuf ieselguh more. A n 3.7 m ion of he reas 7 mg/L. f kieselg f the s on facto efault El ter to c ion of C ain susp	identified u ihr or othe organisms. of kieselguhe at manufact g the amour ating that Before ente acturing of ar, flux-calcin ny wastewa g kieselguhe the substar onable wors guhr, flux-ca ubstance, the or of 10 is ta USES). This I oastal sites, .037 mg/L ir pended parti	ses will not si er compound n is low. The r, flux-calcine turing sites m at that can be suspended p ering the loc the substan ned. The sedi ater released r, flux-calcine nee during w st-case conce licined in sur- ne concentration ken into acco eads to a sur a dilution fac n marine wate	ds in th substance d. ay contai e dissolve articles c al sewag ce can b mentatio from th d per lite vastewate ntration c face wate cion of 3. pount at th face wate ctor of 10 ers guhr, flux
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants (WWTP) Aquatic pelagic compartment	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is resulti- ntal exposure (qualitative assessment) According to unpublished monitoring up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre- treatment plant (STP), the wastewar treated by sedimentation to remove to is very efficient with a reduction effi- sedimentation step is expected to co wastewater (saturated solution). No treatment is considered in the presen- kieselguhr, flux-calcined in the effluent To calculate the reasonable worst-case that may be due to emissions from mg/L in the effluent of the local STP is point of mixing of the wastewater wit concentration of 0.37 mg/L. For release (EUSES default) is considered which le- The wastewater released to the envir calcined. These solid parts will settle	no risks guhr, flu poncentra guhr, flu s essent ing from data, wa l per lite (3.7 m sent in ter resu the solid ficacy o ntain no furthe t assess t of a lo se conce the mai s taken i h surface ses of th ads to a ronmen down at	x-calcined f ations of ix-calcined f ix-calcined tially unavai to the manuf astewater re- er. This is ex- g/L at 20°C the waste ulting from d parts of k if 99% or r o more tha r degradat ment and t cal STP is 3. entration of nufacture c and a diluti- ce wastewa concentrat t may conta t the bottor	rom its kieselgu for bioa lable to acture o eleased cceedin c), indic water. manuf ieselgut nore. A n 3.7 m ion of he reas 7 mg/L. f kieselg f the si on facto efault E ter to c ion of O ain susp n of the	identified u ihr or othe organisms. of kieselguhe at manufact g the amour ating that Before ente acturing of ar, flux-calcin ny wastewa g kieselguh the substar onable wors guhr, flux-ca ubstance, the or of 10 is ta USES). This I oastal sites, 0.037 mg/L in pended partie	ses will not si er compound is low. The r, flux-calcine turing sites m at that can be suspended p ering the loc the substan ned. The sedi ater released r, flux-calcine nee during w st-case conce licined in sur- ne concentration ken into acco eads to a sur a dilution fac n marine wate icles of kiesel vater. As kies	ds in th substance d. ay contai e dissolve articles of al sewag ce can b mentatio from th d per lite vastewate ntration of face wate cion of 3. pount at th face wate ctor of 10 ers guhr, flux elguhr is
(dermal) Indirect exposure via the environment Consumer exposure 5.2. Environme Wastewater treatment plants (WWTP) Aquatic pelagic compartment	Dermal exposure was not assessed, as It is expected that emissions of kieselg increase the naturally occurring co environment. The potential of kieselg has a low solubility in water and thus i No direct consumer exposure is resulti- ntal exposure (qualitative assessment) According to unpublished monitoring of up to 100 mg kieselguhr, flux-calcined in one liter of water at saturation kieselguhr, flux-calcined may be pre- treatment plant (STP), the wastewa treated by sedimentation to remove to is very efficient with a reduction effi- sedimentation step is expected to co wastewater (saturated solution). No treatment is considered in the presen kieselguhr, flux-calcined in the effluen To calculate the reasonable worst-case that may be due to emissions from mg/L in the effluent of the local STP is point of mixing of the wastewater wit concentration of 0.37 mg/L. For release (EUSES default) is considered which lease The wastewater released to the envir	no risk: guhr, flu procentra guhr, flu s essent ing from data, wa l per lite (3.7 mg sent in ter resu ter resu ter resu ficacy o ntain no ficacy o ntain no furthe t assess t of a lo se conce the mai s taken i h surface ses of th ads to a ronmen down at consisti	s are anticip x-calcined f ations of ix-calcined tially unavai tially unavai to the manuf astewater re- cr. This is ex- g/L at 20°C the waster ulting from d parts of k if 99% or r o more tha r degradat ment and t cal STP is 3. entration of nufacture of and a diluti- ce wastewa concentrat t may conta t the bottor ng of the si	rom its kieselgu for bioa lable to acture o eleased cceedin c), indic water. manuf ieselguh nore. A n 3.7 m ion of he reas 7 mg/L. f kieselg f the s on facto efault E ter to c ion of C ain susp m of the nells of	identified u ihr or othe organisms. of kieselguhe at manufact g the amour ating that Before ente acturing of ar, flux-calcie ny wastewa g kieselguhe the substar onable wors guhr, flux-ca ubstance, th or of 10 is ta USES). This I oastal sites, 0.037 mg/L ir pended partie e receiving v diatoms an	ses will not si er compound is low. The r, flux-calcine turing sites m at that can be suspended p ering the loc the substan ned. The sedi ater released r, flux-calcine nee during w ater. ase concer- licined in sur- ne concentration ken into acco eads to a sur a dilution fac n marine wate colles of kiesel vater. As kies d is naturally	ds in th substance d. ay contai e dissolve articles of al sewag ce can b mentatio from th d per lite vastewate ntration of face wate cion of 3. pount at th face wate ctor of 10 ers guhr, flux elguhr is

	Kieselguhr is a naturally occurring sedimentary rock consisting of the shells of diatoms which is formed in water bodies and is therefore considered a natural part of the ecosystem. Therefore, no risk is anticipated with kieselguhr, flux-calcined in sediments and no exposure assessment for sediment is carried out.
Soil and groundwater	Kieselguhr, flux-calcined may be released to soil via atmospheric deposition and via sewage sludge brought to agricultural fields and grassland. Kieselguhr is a naturally occurring sedimentary rock which is essentially a mineral fraction of soil already. Only the accidental release of a significant quantity kieselguhr, flux-calcined is expected to alter the physical and chemical characteristics of a soil. As atmospheric deposition to soil is regarded as minor and the deposition of sewage sludge to fields takes place under controlled conditions no risk is anticipated with the release of kieselguhr, flux-calcined to soil from the use described in this scenario and thus, no further assessment of the exposure concentrations in soil is undertaken
Atmospheric compartment	Emissions of kieselguhr, flux-calcined into the atmosphere are low during the manufacture of the substance and waste air is expected to be filtered before released to the environment. The atmospheric concentrations of the substance are expected to be low. It is recommended to pass waste gas from manufacturing processes through bag filters, scrubbers, or cyclones to reduce the amount of solid substance in the waste gas. No further assessment of the exposure concentrations in the atmosphere is undertaken.
Secondary poisoning	The potential of kieselguhr, flux-calcined for bioaccumulation is low. The substance has a low solubility in water and thus is essentially unavailable to organisms.

Exposure Scenario 2: Use as filter aid in industrial settings

1. Short title of exposure scenario 2

Use as a filter aid in industrial settings

2. Description of	activities and processes covered in the exposure scenario
Sector of use	SU 3: Industrial uses: uses of substances as such or in preparations at industrial sites
(SU)	SU 4: Manufacture of food products
	SU 6: Manufacture of pulp, paper and paper products
	SU 8: Manufacture of bulk, large scale chemicals
	SU 10: Formulation mixing) of preparations and/or re-packaging
	SU 14: Manufacture of basic metals
Due du et	SU 17: General manufacturing, e.g. machner, equipment, vehicles, other transport equipment.
Product	PC 2: Adsorbents
category (PC)	PC 14: Metal surface treatment products, including galvanic and electroplating products
	PC 20: Products such as ph-regulators, flocculants, precipitants, neutralization agents
	PC 25: Metal working fluids
	PC 35: Washing and cleaning products (including solvent based products)
_	PC 0: Other: Filtration material
Process	PROC 1: Use in closed process, no likelihood of exposure
category (PROC)	PROC 2: Use in closed, continuous process with occasional controlled exposure
	PROC 3: Use in closed batch process (synthesis or formulation)
	PROC 4: Use in batch and other process (synthesis) where opportunity for exposure arises
	PROC 5: Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact)
	PROC 8a: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities
	PROC 8b: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities
	PROC 9: Transfer of substance or preparation into small containers (dedicated filling line, including
	weighing)
	PROC 15: Use as laboratory reagent
	PROC 19: Hand-mixing with intimate contact and only PPE available.
Article category	Not applicable
(AC)	

Environmental	
release category	ERC 1: Manufacture of substances
(ERC)	ERC 2: Formulation of preparations
Υ - <i>γ</i>	ERC 4: Industrial use of processing aids in processes and products, not becoming part of articles ERC 6b: Industrial use of reactive processing aids
	ERC 7: Industrial use of substances in closed systems
3. Operational co	
3. 1 Operational of	condition related with frequency and quantities of use
Duration of	4-8 hours per day
exposure at workplace:	
Frequency of exposure at workplace:	5 days/week for each worker
Annual amount used per site:	The daily and annual amount/emission per site is not considered to be the main determinant for environmental exposure.
3.2 Operational c	onditions related with substance/ product
Physical state	Solid and liquid
Concentration	A concentration of 100% w/w was used to assess exposure to the solid substance.
of substance in mixture	The exposure concentrations due to contact with liquid mixtures were calculated by considering a concentration of the substance in the liquid phase ranging from 5% to 25%.
3.3 Other relevan	t operational conditions
No information at	pout frequency and duration of the various tasks is available.
4. Risk Managem	ent Measures
4.1 RMMs related	l to workers
Organisational measures	Solid substance: Local exhaust ventilation is installed at the manufacturing sites. The employer has also to ascertain that the required PPE is available and used according to instructions.
Technical measures	Solid substance: Safe conditions were defined by considering local exhaust ventilation in the present scenario Liquid substance: Outdoor activity – natural ventilation
Respiratory protection	In addition, workers may use half-face masks (P2 or P3) with an efficiency of at least 90% ir situations with elevated dust concentrations in the air.
	Liquid substance: N/A
Hand protection	Skin protection may be used.
Eye protection	Eye protection may be used.
Skin and body protection	Wearing of suitable protective clothing
Hygiene measures	Standard occupational hygiene measures should be adopted.
4.2 RMMs related	to the environment
Organisational measures	Waste gases are cleaned by passage through cyclones or scrubber units or by filtration with bag filters. Solid and liquid wastes are disposed of in landfills or may be incinerated
Abatement	The wastewater can be treated by sedimentation to remove the solid parts of the substance. The
measures related with	sedimentation is very efficient with a reduction efficacy of 99% or more.
wastewater	

Abatement measures waste air and solid waste	Waste air may be filtered e.g. by bag filters or scrubber units.
4.3 Waste related	l measures
Type of waste	Solid and liquid waste.
Disposal technique	Solid and liquid waste may be incinerated or disposed of in landfills.
Fraction released to environment during waste treatment	Any wastewater released from the sedimentation step is expected not to contain more than 3.7 mg/L (saturated solution).
	xposure resulting from the conditions described above and the substance properties.

5.1. Human exposure			
Workers (oral)	Good hygiene practice will minimise oral exposure		
Workers	Safe conditions for the handling of solid kieselguhr, flux-calcined are given in for the manufacture		
(inhalation)	of the substance. These apply also to the use of the substance as filter aid covered in exposure		
DNEL: Worker, long-term, systemic, inhalation: 0.05 mg/m ³	scenario 2. The modelled long-term exposure concentrations resulting from the handling of liquid mixtures containing the substance are compared to the DNEL for chronic inhalation exposure to obtain risk characterization ratios. RCRs above 1 indicate that the potential risk is not adequately controlled. Safe conditions of use are described in for all activities described in exposure scenario 1. It is concluded that the manufacture of solid kieselguhr, flux-calcined exhibiting different grades of dustiness is safe for workers under the specified conditions of exposure.		

Process Category	LEV	Duration	PRE	Content (%)	Inhalation exposure (mg/m3)	RCR
	INDUST	RIAL USE OF LIC	QUID MA	TERIAL		
2 – Use in closed,						
continuous process with						
occasional controlled						
exposure	No	4 to 8	No	5 to 25	0.147	2.94
3 – Use in closed batch						
process (synthesis or						
formulation)	No	4 to 8	No	5 to 25	0.147	2.94
4 – Use in batch and other						
process (synthesis) where						
opportunity for exposure						
arises	No	4 to 8	No	5 to 25	0.147	2.94
5 – Mixing or blending in						
batch processes						
(multistage and/or						
significant contact)	No	4 to 8	No	5 to 25	0.147	2.94
8a – Transfer of chemicals						
from/to vessels/ large						
containers at non						
dedicated facilities	No	4 to 8	No	5 to 25	0.147	2.94
8b – Transfer of chemicals						
from/to vessels/ large						
containers at dedicated						
facilities	No	4 to 8	No	5 to 25	0.147	2.94
9 – Transfer of chemicals						
into small containers						
(dedicated filling line)	No	4 to 8	No	5 to 25	0.147	2.94
15 – Use of laboratory						
reagents in small scale						
laboratories	No	4 to 8	No	5 to 25	0.147	2.94
19 – Hand-mixing with						
intimate contact (only PPE						
available): modelled with						
ConsExpo	No	8	No	10	0.0002	0.004

Workers	Dermal exposure was not assessed, as no risks are anticipated with dermal exposure.			
(dermal)				
Indirect exposure via the environment	It is expected that emissions of kieselguhr, flux-calcined from its identified uses will not significantly increase the naturally occurring concentrations of kieselguhr or other compounds in the environment. The potential of kieselguhr, flux-calcined for bioaccumulation is low. The substance has a low solubility in water and thus is essentially unavailable to organisms.			
Consumer exposure	No direct consumer exposure is resulting from the manufacture of kieselguhr, flux-calcined.			
5.2. Environment	al exposure (qualitative assessment)			
Wastewater treatment plants (WWTP)	The amount of kieselguhr, flux-calcined present in the wastewater may exceed the amount that can be dissolved at saturation (3.7 mg/L at 20°C), indicating that suspended particles of kieselguhr, flux-calcined may be present in the wastewater. Before entering a sewage treatment plant (STP), the wastewater should be treated by sedimentation to remove the greatest portion of solids. Sedimentation is very efficient with a reduction efficacy of 99% or more. Any wastewater released from the sedimentation step is expected to contain no more than 3.7 mg kieselguhr, flux-calcined per liter wastewater (saturated solution). No further degradation of the substance during wastewater treatment is considered in the present assessment and the reasonable worst-case concentration of kieselguhr, flux-calcined in the effluent of a local STP is 3.7 mg/L.			
Aquatic pelagic compartment	To calculate the reasonable worst-case concentration of kieselguhr, flux-calcined in surface water that may be due to emissions from the manufacture of the substance, the concentration of 3.7 mg/L in the effluent of the local STP is taken and a dilution factor of 10 is taken into account at the point of mixing of the wastewater with surface water (default EUSES). This leads to a surface water concentration of 0.37 mg/L. For releases of the wastewater to coastal sites, a dilution factor of 100 (EUSES default) is considered which leads to a concentration of 0.037 mg/L in marine waters			
Sediments	The wastewater released to the environment may contain suspended particles of kieselguhr, flux- calcined. These solid parts will settle down at the bottom of the receiving water. As kieselguhr is a naturally occurring sedimentary rock consisting of the shells of diatoms and is naturally formed in water bodies this not considered to cause a potential hazard to the receiving water. Kieselguhr is a naturally occurring sedimentary rock consisting of the shells of diatoms which is formed in water bodies and is therefore considered a natural part of the ecosystem. Therefore, no risk is anticipated with kieselguhr, flux-calcined in sediments and no exposure assessment for sediment is carried out			
Soil and groundwater	Kieselguhr, flux-calcined may be released to soil via atmospheric deposition and via sewage sludge brought to agricultural fields and grassland. Kieselguhr is a naturally occurring sedimentary rock which is essentially a mineral fraction of soil already. Only the accidental release of a significant quantity kieselguhr, flux calcined is expected to alter the physical and chemical characteristics of a soil. As atmospheric deposition to soil is regarded as minor and the deposition of sewage sludge to fields takes place under controlled conditions no risk is anticipated with the release of kieselguhr, flux-calcined to soil from the use described in this scenario and thus, no further assessment of the exposure concentrations in soil is undertaken			
Atmospheric compartment	Emissions of kieselguhr, flux-calcined into the atmosphere are low during the use of kieselguhr, flux-calcined as a filter aid in industrial settings. The atmospheric concentrations of the substance are expected to be low. No further assessment of the exposure concentrations in the atmosphere is undertaken			
Secondary poisoning	The potential of kieselguhr, flux-calcined for bioaccumulation is low. The substance has a low solubility in water and thus is essentially unavailable to organisms.			

Exposure Scenario 3: Use as additive in formulation of liquid, viscous or solid mixtures

1. Short title of exposure scenario 3

Use as an additive in formulation of liquids, viscous or solid mixtures

2. Description of activities and processes covered in the exposure scenario

Sector of use (SU)	 SU 3: Industrial uses: uses of substances as such or in preparations at industrial sites SU 10: Formulation mixing) of preparations and/or re-packaging SU 11: Manufacture of rubber products SU 13: Manufacture of other non-metallic mineral products, e.g. plasters, cement.
Product category (PC)	PC 2: Adsorbents PC 9: Coatings and paints, fillers, putties, thinners PC 21: Laboratory chemicals PC 29: Pharmaceuticals PC 35: Washing and cleaning products (including solvent based products)
Process category (PROC)	 PROC 1: Use in closed process, no likelihood of exposure PROC 2: Use in closed, continuous process with occasional controlled exposure PROC 3: Use in closed batch process (synthesis or formulation) PROC 4: Use in batch and other process (synthesis) where opportunity for exposure arises PROC 5: Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact) PROC 8a: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities PROC 8b: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities PROC 9: Transfer of substance or preparation into small containers (dedicated filling line, including weighing) PROC 14: Production of preparations or articles by tableting, compression, extrusion, palletization. PROC 15: Use as laboratory reagent PROC 19: Hand-mixing with intimate contact and only PPE available.
Article category (AC)	AC 10: Rubber products AC 13: Plastic products
Environmental release category (ERC)	ERC 2: Formulation of preparations ERC 4: Industrial use of processing aids in processes and products, not becoming part of articles ERC 7: Industrial use of substances in closed systems ERC 8b: Wide dispersive indoor use of reactive substances in open systems
3. Operational c	
3. 1 Operational	condition related with frequency and quantities of use
Duration of exposure at workplace:	8 hrs/day
exposure at	8 hrs/day 5 days/week for each worker
exposure at workplace: Frequency of exposure at	
exposure at workplace: Frequency of exposure at workplace: Annual amount used per site:	5 days/week for each worker The daily and annual amount/emission per site is not considered to be the main determinant for
exposure at workplace: Frequency of exposure at workplace: Annual amount used per site:	5 days/week for each worker The daily and annual amount/emission per site is not considered to be the main determinant for environmental exposure.
exposure at workplace: Frequency of exposure at workplace: Annual amount used per site: 3.2 Operational Physical state Concentration of substance in	5 days/week for each worker The daily and annual amount/emission per site is not considered to be the main determinant for environmental exposure. conditions related with substance/ product
exposure at workplace: Frequency of exposure at workplace: Annual amount used per site: 3.2 Operational Physical state Concentration of substance in mixture	5 days/week for each worker The daily and annual amount/emission per site is not considered to be the main determinant for environmental exposure. conditions related with substance/ product Solid and liquid The concentration of the substance in the final mixtures may range from <1 % (liquid) to 60 %
exposure at workplace: Frequency of exposure at workplace: Annual amount used per site: 3.2 Operational Physical state Concentration of substance in mixture 3.3 Other releva	5 days/week for each worker The daily and annual amount/emission per site is not considered to be the main determinant for environmental exposure. conditions related with substance/ product Solid and liquid The concentration of the substance in the final mixtures may range from <1 % (liquid) to 60 % (dental fillings).
exposure at workplace: Frequency of exposure at workplace: Annual amount used per site: 3.2 Operational Physical state Concentration of substance in mixture 3.3 Other releva	5 days/week for each worker The daily and annual amount/emission per site is not considered to be the main determinant for environmental exposure. conditions related with substance/ product Solid and liquid The concentration of the substance in the final mixtures may range from <1 % (liquid) to 60 % (dental fillings).
exposure at workplace: Frequency of exposure at workplace: Annual amount used per site: 3.2 Operational Physical state Concentration of substance in mixture 3.3 Other releva No information a 4. Risk Manager	5 days/week for each worker The daily and annual amount/emission per site is not considered to be the main determinant for environmental exposure. conditions related with substance/ product Solid and liquid The concentration of the substance in the final mixtures may range from <1 % (liquid) to 60 % (dental fillings). Int operational conditions about frequency and duration of the various tasks is available. ment Measures
exposure at workplace: Frequency of exposure at workplace: Annual amount used per site: 3.2 Operational Physical state Concentration of substance in mixture 3.3 Other releva No information a	5 days/week for each worker The daily and annual amount/emission per site is not considered to be the main determinant for environmental exposure. conditions related with substance/ product Solid and liquid The concentration of the substance in the final mixtures may range from <1 % (liquid) to 60 % (dental fillings). Int operational conditions about frequency and duration of the various tasks is available. ment Measures

Technical measures	LEV may be present and/or respiratory masks (P3) may be used in situations with elevated dust concentrations in the air. Skin protection and eye protection may be used
Respiratory protection	LEV may be present and/or respiratory masks (P3) may be used in situations with elevated dust concentrations in the air.
Hand protection	Skin protection may be used.
Eye protection	Eye protection may be used.
Skin and body protection	Wearing of suitable protective clothing.
Hygiene measures	Standard occupational hygiene measures should be adopted.
4.2 RMMs relate	d to the environment
Organisational measures	Waste gases are cleaned by passage through cyclones or scrubber units or by filtration with bag filters. Solid and liquid wastes are disposed of in landfills or may be incinerated
Abatement measures related with wastewater	The wastewater resulting from manufacturing of the substance can be treated by sedimentation to remove the solid parts of the substance. The sedimentation is very efficient with a reduction efficacy of 99% or more.
Abatement measures waste air and solid waste	It is recommended to pass waste gas through bag filters, scrubbers, or cyclones to reduce the amount of solid substance in the waste gas.
4.3 Waste relate	d measures
Type of waste	Solid and liquid waste.
Disposal technique	Solid and liquid waste may be incinerated or disposed of in landfills.
Fraction released to environment during waste treatment	Any wastewater released from the sedimentation step is expected not to contain more than 3.7 mg/L (saturated solution).

5. Prediction of exposure resulting from the conditions described above and the substance properties.

5.1. Human exp	5.1. Human exposure			
Workers (oral)	Good hygiene practice will minimise oral exposure			
Workers (inhalation) DNEL: Worker, long-term, systemic, inhalation: 0.05mg/m ³	The workers' inhalation exposure to kieselguhr, flux-calcined that may occur during the formulation of liquid, viscous or solid preparations described in the present exposure scenario ES 3 is covered by the exposure concentrations calculated in the exposure scenarios ES 1 and ES 2.			
Workers (dermal)	Dermal exposure was not assessed, as no risks are anticipated with dermal exposure.			
Indirect exposure via the environment	It is expected that emissions of kieselguhr, flux-calcined from its identified uses will not significantly increase the naturally occurring concentrations of kieselguhr or other compounds in the environment. The potential of kieselguhr, flux-calcined for bioaccumulation is low. The substance has a low solubility in water and thus is essentially unavailable to organisms.			

Consumer	No direct consumer exposure is resulting from the use of kieselguhr, flux calcined as an additive in				
exposure	the formulation of liquid, viscous or solid mixtures.				
5.2. Environmental exposure (qualitative assessment)					
Wastewater treatment plants (WWTP)	The amount of kieselguhr, flux-calcined present in the wastewater may exceed the amount that can be dissolved at saturation (3.7 mg/L at 20°C), indicating that suspended particles of kieselguhr, flux-calcined may be present in the wastewater. Before entering a sewage treatment plant (STP), the wastewater should be treated by sedimentation to remove the greatest portion of solids. Sedimentation is very efficient with a reduction efficacy of 99% or more. Any wastewater released from the sedimentation step is expected to contain no more than 3.7 mg kieselguhr, flux-calcined per liter wastewater (saturated solution). No further degradation of the substance during wastewater treatment is considered in the present assessment and the reasonable worst-case concentration of kieselguhr, flux-calcined in the effluent of a local STP is 3.7 mg/L.				
Aquatic pelagic compartment	To calculate the reasonable worst-case concentration of kieselguhr, flux-calcined in surface water that may be due to emissions from the manufacture of the substance, the concentration of 3.7 mg/L in the effluent of the local STP is taken and a dilution factor of 10 is taken into account at the point of mixing of the wastewater with surface water (default EUSES). This leads to a surface water concentration of 0.37 mg/L. For releases of the wastewater to coastal sites, a dilution factor of 100 (EUSES default) is considered which leads to a concentration of 0.037 mg/L in marine waters				
Sediments	The wastewater released to the environment may contain suspended particles of kieselguhr, flux- calcined. These solid parts will settle down at the bottom of the receiving water. As kieselguhr is a naturally occurring sedimentary rock consisting of the shells of diatoms and is naturally formed in water bodies this not considered to cause a potential hazard to the receiving water. Kieselguhr is a naturally occurring sedimentary rock consisting of the shells of diatoms which is formed in water bodies and is therefore considered a natural part of the ecosystem. Therefore, no risk is anticipated with kieselguhr, flux-calcined in sediments and no exposure assessment for sediment is carried out				
Soil and groundwater	Kieselguhr, flux-calcined may be released to soil via atmospheric deposition and via sewage sludge brought to agricultural fields and grassland. Kieselguhr is a naturally occurring sedimentary rock which is essentially a mineral fraction of soil already. Only the accidental release of a significant quantity kieselguhr, flux calcined is expected to alter the physical and chemical characteristics of a soil. As atmospheric deposition to soil is regarded as minor and the deposition of sewage sludge to fields takes place under controlled conditions no risk is anticipated with the release of kieselguhr, flux-calcined to soil from the use described in this scenario and thus, no further assessment of the exposure concentrations in soil is undertaken				
Atmospheric compartment	Emissions of kieselguhr, flux-calcined into the atmosphere are low during the use of kieselguhr, flux-calcined as a filter aid in industrial settings. The atmospheric concentrations of the substance are expected to be low. No further assessment of the exposure concentrations in the atmosphere is undertaken				
Secondary poisoning	The potential of kieselguhr, flux-calcined for bioaccumulation is low. The substance has a low solubility in water and thus is essentially unavailable to organisms.				

Exposure Scenario 4: Use as process aid in manufacture of chemicals, resins, rubbers, and plastics

1. Short title of exposure scenario 4 Use as process aid in manufacture of chemicals, resins, rubbers, and plastics 2. Description of activities and processes covered in the exposure scenario				
			Sector of use (SU)	 SU 3: Industrial uses: uses of substances as such or in preparations at industrial sites SU 8: Manufacture of bulk, large scale chemicals SU 9: Manufacture of fine chemicals SU 11: Manufacture of rubber products SU 12: Manufacture of plastics products, including compound and conversion.
			Product category (PC)	PC 16: Heat transfer fluids PC 17: Hydraulic fluids PC 20: Products such as ph-regulators, flocculants, precipitants, neutralization agents

	T
	PC 24: Lubricants, greases, release products
	PC 25: Metal working fluids
	PC 32: Polymer preparations and compounds
Process category (PROC)	 PROC 1: Use in closed process, no likelihood of exposure PROC 2: Use in closed, continuous process with occasional controlled exposure PROC 3: Use in closed batch process (synthesis or formulation) PROC 4: Use in batch and other process (synthesis) where opportunity for exposure arises PROC 5: Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact) PROC 8b: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities PROC 15: Use as laboratory reagent PROC 19: Hand-mixing with intimate contact and only PPE available.
Article category	Not applicable
Article category (AC)	Not applicable
Environmental release category (ERC)	ERC 1: Manufacture of substances ERC 2: Formulation of preparations
	ERC 4: Industrial use of processing aids in processes and products, not becoming part of articles
3. Operational con	ditions
3. 1 Operational co	ondition related with frequency and quantities of use
Duration of exposure at workplace:	8 hours per day
Frequency of exposure at workplace:	360 days/year for each worker
Annual amount used per site:	The daily and annual amount/emission per site is not considered to be the main determinant for environmental exposure.
3.2 Operational co	nditions related with substance/ product
Physical state	Solid and liquid
Concentration of substance in mixture	100% w/w
3.3 Other relevant	operational conditions
	out frequency and duration of the various tasks is available.
4. Risk Manageme	
4.1 RMMs related	to workers
Organisational measures	The employer has also to ascertain that the required PPE is available and used according to instructions.
Technical	LEV may be present and/or respiratory masks (P3) may be used in situations with elevated dust

measures	concentrations in the air. Skin protection and eye protection may be used
Respiratory protection	LEV may be present and/or respiratory masks (P3) may be used in situations with elevated dust concentrations in the air.
Hand protection	Skin protection may be used.
Eye protection	Eye protection may be used.
Skin and body	Wearing of suitable protective clothing.

protection			
-			
Hygiene measures	Standard occupational hygiene measures should be adopted.		
4.2 RMMs related	to the environment		
Organisational measures	Not applicable		
Abatement measures related with wastewater	The wastewater resulting from manufacturing of the substance can be treated by sedimentation to remove the solid parts of the substance. The sedimentation is very efficient with a reduction efficacy of 99% or more.		
Abatement measures waste air and solid waste	It is recommended to pass waste gas through bag filters, scrubbers, or cyclones to reduce the amount of solid substance in the waste gas.		
4.3 Waste related	measures		
Type of waste	Solid and liquid waste.		
Disposal technique	Solid and liquid waste may be incinerated or disposed of in landfills.		
Fraction released to environment during waste treatment	Any wastewater released from the sedimentation step is expected not to contain more than 3.7 mg/L (saturated solution).		
5. Prediction of exp	posure resulting from the conditions described above and the substance properties.		
5.1. Human exposi	ure		
Workers (oral)	Good hygiene practice will minimise oral exposure		
Workers (inhalation) DNEL: Worker, long-term, systemic, inhalation: 0.05mg/m ³	The workers' inhalation exposure to kieselguhr, flux-calcined that may occur during the formulation of liquid, viscous or solid preparations described in the present exposure scenario ES 4 is covered by the exposure concentrations calculated in the exposure scenarios ES 1 and ES 2.		
Workers (dermal)	Dermal exposure was not assessed, as no risks are anticipated with dermal exposure.		
Indirect exposure via the environment	It is expected that emissions of kieselguhr, flux-calcined from its identified uses will not significantly increase the naturally occurring concentrations of kieselguhr or other compounds in the environment. The potential of kieselguhr, flux-calcined for bioaccumulation is low. The substance has a low solubility in water and thus is essentially unavailable to organisms.		
Consumer exposure	No direct consumer exposure is resulting from the use of kieselguhr, flux-calcined as a process aid in the manufacture of chemicals, resins, rubbers and plastics		
5.2. Environmental exposure (qualitative assessment)			
Wastewater treatment plants (WWTP)	The amount of kieselguhr, flux-calcined present in the wastewater may exceed the amount that can be dissolved at saturation (3.7 mg/L at 20°C), indicating that suspended particles of kieselguhr, flux-calcined may be present in the wastewater. Before entering a sewage treatment plant (STP), the wastewater should be treated by sedimentation to remove the greatest portion of solids. Sedimentation is very efficient with a reduction efficacy of 99% or more. Any wastewater released from the sedimentation step is expected to contain no more than 3.7 mg kieselguhr, flux-calcined per liter wastewater (saturated solution). No further degradation of the substance during wastewater treatment is considered in the present assessment and the reasonable worst-case concentration of kieselguhr, flux-calcined in the effluent of a local STP is 3.7 mg/L.		

Material Safety data Sheet for kieselguhr, flux-calcined (RCS < 1 %) – November 2010 Annex I - Exposure Scenario Page 14/22

Aquatic pelagic compartment	To calculate the reasonable worst-case concentration of kieselguhr, flux-calcined in surface water that may be due to emissions from the manufacture of the substance, the concentration of 3.7 mg/L in the effluent of the local STP is taken and a dilution factor of 10 is taken into account at the point of mixing of the wastewater with surface water (default EUSES). This leads to a surface water concentration of 0.37 mg/L. For releases of the wastewater to coastal sites, a dilution factor of 100 (EUSES default) is considered which leads to a concentration of 0.037 mg/L in marine waters
Sediments	The wastewater released to the environment may contain suspended particles of kieselguhr, flux-calcined. These solid parts will settle down at the bottom of the receiving water. As kieselguhr is a naturally occurring sedimentary rock consisting of the shells of diatoms and is naturally formed in water bodies this not considered to cause a potential hazard to the receiving water. Kieselguhr is a naturally occurring sedimentary rock consisting of the shells of diatoms which is formed in water bodies and is therefore considered a natural part of the ecosystem. Therefore, no risk is anticipated with kieselguhr, flux-calcined in sediments and no exposure assessment for sediment is carried out
Soil and groundwater	Kieselguhr, flux-calcined may be released to soil via atmospheric deposition and via sewage sludge brought to agricultural fields and grassland. Kieselguhr is a naturally occurring sedimentary rock which is essentially a mineral fraction of soil already. Only the accidental release of a significant quantity kieselguhr, flux calcined is expected to alter the physical and chemical characteristics of a soil. As atmospheric deposition to soil is regarded as minor and the deposition of sewage sludge to fields takes place under controlled conditions no risk is anticipated with the release of kieselguhr, flux-calcined to soil from the use described in this scenario and thus, no further assessment of the exposure concentrations in soil is undertaken
Atmospheric compartment	Emissions of kieselguhr, flux-calcined into the atmosphere are low during the use of the substance as a process aid in the manufacture of chemicals, resins, rubbers, and plastics. The atmospheric concentrations of the substance are expected to be low. It is recommended to pass waste gas through bag filters, scrubbers, or cyclones to reduce the amount of solid substance in the waste gas. No further assessment of the exposure concentrations in the atmosphere is undertaken
Secondary poisoning	The potential of kieselguhr, flux-calcined for bioaccumulation is low. The substance has a low solubility in water and thus is essentially unavailable to organisms.

Exposure Scenario 5: Professional use by dental technicians and dentists

Professional use by dental technicians and dentists		
2. Description of a	ctivities and processes covered in the exposure scenario	
Sector of use	SU 9: Manufacture of fine chemicals	
(SU)	SU 10: Formulation mixing) of preparations and/or re-packaging	
	SU 12: Manufacture of plastics products, including compound and conversion	
	SU 20: Health surfaces.	
Product category	PC 32: Polymer preparations and compounds	
(PC)		
Process category	PROC 5: Mixing or blending in batch processes for formulation of preparations and article	
(PROC)	(multistage and/or significant contact)	
	PROC 19: Hand-mixing with intimate contact and only PPE available.	
Article category	Not applicable	
(AC)		
Environmental	ERC 2: Formulation of preparations	
release category		
(ERC)	ERC 3: Formulation in materials	
	ERC 8f: Wide dispersive outdoor use resulting in inclusion into or onto a matrix	

3. 1 Operational co	ondition related with frequency and quantities of use						
Duration of exposure at workplace:	Up to 1 h/day						
Frequency of exposure at workplace:	Performed on up to 220 days/year						
Annual amount used per site:	The daily and annual amount emission per site is not considered to be the main determinant for environmental exposure.						
3.2 Operational co	nditions related with substance/ product						
Physical state	Solid and liquid						
Concentration of substance in mixture	Such materials can contain the substance at levels up to 60% w/w						
3.3 Other relevant	operational conditions						
No information ab	out frequency and duration of the various tasks is available.						
4. Risk Manageme	ent Measures						
4.1 RMMs related	to workers						
Organisational measures	The employer has also to ascertain that the required PPE is available and used according to instructions.						
Technical measures	Professionals normally do the mixing in the absence of LEV.						
Respiratory protection	N/A						
Hand protection	Skin protection may be used.						
Eye protection	Eye protection may be used.						
Skin and body protection	Wearing of suitable protective clothing.						
Hygiene measures	Standard occupational hygiene measures should be adopted.						
4.2 RMMs related	to the environment						
Organisational measures	Any liquid waste that results from cleaning of equipment will be disposed of via the public sewer. Solid waste may be incinerated or deposited in landfills						
Abatement measures related with wastewater	Any liquid waste that results from cleaning of equipment will be disposed of via the public sewer						
Abatement measures waste air and solid waste	Solid waste may be incinerated or deposited in landfills. Emissions of kieselguhr, flux-calcined into the atmosphere are low during the use of the substance in dental practices. The atmospheric concentrations of the substance are expected to be low. No further assessment of the exposure concentrations in the atmosphere is undertaken.						
4.3 Waste related	measures						
Type of waste	Solid and liquid waste.						
Disposal technique	Solid waste may be incinerated or deposited in landfills. Any liquid waste that results from cleaning of equipment will be disposed of via the public sewer.						

Material Safety data Sheet for kieselguhr, flux-calcined (RCS < 1 %) – November 2010 Annex I - Exposure Scenario Page 16/22

Fraction released to environment during waste treatment	Emissions from filling and alginate impression material ma kieselguhr, flux-calcined are used per year for dental filling 10%, i.e. 30 t/year, is considered for regional use. For considered, i.e. 60 kg/year. Part of the substance may materials which were in contact with preparations containi most 10% of the filling and impression materials are relea scale. This results in a reasonable worst-case emission of Emissions of the substance into the atmosphere or the sol	and impression material in the EU. A fraction the local use, 0.2% of the regional tonnage be release to the wastewater when clear ng kieselguhr, flux-calcined. It is expected th sed to the sewer, i.e. 6 kg per year on the substance into the wastewater of 0.023 kg/	on of ge is aning at at local
	Parameter	Value	

Parameter	value
Tonnage in EU per year	300 t
Regional tonnage per year	30 t
Local tonnage per year	60 kg
Fraction of main local source	0.002
Number of days	260 d
Fraction of tonnage released to air	0
Fraction of tonnage released to wastewater	0.1
Fraction of tonnage released to soil	0
Local emissions to wastewater	0.023 kg/day

5. Prediction of exposure resulting from the conditions described above and the substance properties.

5.1. Human expos	ure					
Workers (oral)	Good hygiene practice will minimise oral exposure.					
Workers (inhalation) DNEL: Worker, long-term, systemic, inhalation: 0.05 mg/m ³	The modelled reasonable worst-case long-term exposure concentrations resulting from the handling of small amounts of dental filling or impression materials (about 50 g/application) is 0.024 mg/m ³ . The RCR obtained by comparing this concentration of the long-term inhalation DNEL of 0.05 mg/m ³ is 0.48 showing that the potential health risk for workers is controlled for the professional use of kieselguhr, flux-calcined as dental filling and impression material by dental technicians and dentists.					
Workers (dermal)	Dermal exposure was not assessed, as no risks are anticipated with dermal exposure.					
Indirect exposure via the environment	It is expected that emissions of kieselguhr, flux-calcined from its identified uses will not significantly increase the naturally occurring concentrations of kieselguhr or other compounds in the environment. The potential of kieselguhr, flux-calcined for bioaccumulation is low. The substance has a low solubility in water and thus is essentially unavailable to organisms. It is concluded that indirect human exposure to kieselguhr, flux-calcined via the environment is not relevant					
Consumer exposure	Patients may ingest small amounts of substance during dental treatment. In general exposure is expected to be negligible as the dental treatment is performed under professional surveillance.					
5.2. Environmenta	l exposure (qualitative assessment)					
Wastewater treatment plants (WWTP)	In the present assessment, the wastewater passes through a sewage treatment plant (STP) which has a capacity of 2000000 L/day. No removal of kieselguhr, flux-calcined during wastewater treatment is considered for the present exposure scenario. The resulting reasonable worst-case concentration of the substance in the effluent of a local STP is 23000/2000000=0.012 mg/L					
Aquatic pelagic compartment	A dilution factor of 10 is considered at the point of mixing of the wastewater with surface water, leading to a surface water concentration of 0.0012 mg/L. For coastal areas a dilution factor of 100 is considered, leading to a concentration of 0.00012 mg/L in marine waters					

Sediments	The wastewater released to the environment may contain suspended particles of kieselguhr, flux-calcined. These solid parts will settle down at the bottom of the receiving water. As kieselguhr is a naturally occurring sedimentary rock consisting of the shells of diatoms and is naturally formed in water bodies this not considered to cause a potential hazard to the receiving water. Kieselguhr is a naturally occurring sedimentary rock consisting of the shells of diatoms which is formed in water bodies and is therefore considered a natural part of the ecosystem. Therefore, no risk is anticipated with kieselguhr, flux-calcined in sediments and no exposure assessment for sediment is carried out.
Soil and groundwater	Kieselguhr, flux-calcined may be released to soil via atmospheric deposition and via sewage sludge brought to agricultural fields and grassland. Kieselguhr is a naturally occurring sedimentary rock which is essentially a mineral fraction of soil already. Only the accidental release of a significant quantity kieselguhr, flux-calcined is expected to alter the physical and chemical characteristics of a soil. As atmospheric deposition to soil is regarded as minor and the deposition of sewage sludge to fields takes place under controlled conditions no risk is anticipated with the release of kieselguhr, flux-calcined to soil from the use described in this scenario and thus, no further assessment of the exposure concentrations in soil is undertaken
Atmospheric compartment	Emissions of kieselguhr, flux-calcined into the atmosphere are low during the use of the substance in dental practices. The atmospheric concentrations of the substance are expected to be low. No further assessment of the exposure concentrations in the atmosphere is undertaken
Secondary poisoning	The potential of kieselguhr, flux-calcined for bioaccumulation is low. The substance has a low solubility in water and thus is essentially unavailable to organisms.

Exposure Scenario 6: Industrial, professional, and private use of substance or mixtures containing the substance

1. Short title of ex	1. Short title of exposure scenario 6 Industrial, professional and private use of substance or mixtures containing the substance				
Industrial, profess					
2. Description of a	ctivities and processes covered in the exposure scenario				
Sector of use (SU)	SU 3: Industrial uses: uses of substances as such or in preparations at industrial sites SU 21: Consumer uses: Private households (= public = consumers) SU 22: Professional uses: Public domain (administration, education, entertainment, services, craftsmen)				
Product category (PC)	PC 35: Washing and cleaning products (including solvent based products) PC 37: Water treatment chemicals				
Process category (PROC)	PROC 2: Use in closed, continuous process with occasional controlled exposure PROC 3: Use in closed batch process (synthesis or formulation) PROC 4: Use in batch and other process (synthesis) where opportunity for exposure arises PROC 5: Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact) PROC 7: Industrial spraying PROC 8a: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at non-dedicated facilities PROC 10: Roller application or brushing PROC 11: Nonindustrial spraying PROC 13: Treatment of articles by dipping and pouring PROC 19: Hand-mixing with intimate contact and only				
Article category (AC)	AC 10: Rubber products AC 13: Plastic products				
Environmental release category (ERC)	ERC 1: Manufacture of substances ERC 2: Formulation of preparations ERC 8a: Wide dispersive indoor use of processing aids in open systems ERC 8c: Wide dispersive indoor use resulting in inclusion into or onto a matrix ERC 8d: Wide dispersive outdoor use of processing aids in open systems ERC 8f: Wide dispersive outdoor use resulting in inclusion into or onto a matrix ERC 8f: Wide dispersive outdoor use resulting in inclusion into or onto a matrix ERC 10b: Wide dispersive outdoor use of long-life articles and materials with high or intended				

nours hour per day. s up to 60 minutes per use, o 225 days per year. professional use and monthly p to 8 times a day. be the main determinant for
hour per day. s up to 60 minutes per use, o 225 days per year. professional use and monthly p to 8 times a day.
hour per day. s up to 60 minutes per use, o 225 days per year. professional use and monthly p to 8 times a day.
hour per day. s up to 60 minutes per use, o 225 days per year. professional use and monthly p to 8 times a day.
o 225 days per year. professional use and monthly p to 8 times a day.
o 225 days per year. professional use and monthly p to 8 times a day.
p to 8 times a day.
p to 8 times a day.
p to 8 times a day.
ance. The average weight
and the maximum weight
5
ilable and used according to
respiratory equipment during
concentrations of coatings or
uring very good ventilation in
s containing the substance is
-
lustrial and professional users
5
swimming pool water and
released to the sewer and
r
on household waste and may
and professional sites may be

4.3 Waste related	4.3 Waste related measures				
Type of waste	Liquid/solid waste.				
Disposal technique	Wastewater that is generated during cleaning operations may be treated in an onsite treatment plant or be released to the public sewer system and treated in a municipal STP. Solid waste may be disposed of as industrial, commercial, or common household waste and may be incinerated or disposed of in landfills.				
Fraction released to environment during waste treatment	A worst-case is considered in the present assessment in that 10% of the total tonnage placed on the EU market ends up in municipal STPs				

5. Prediction of exposure resulting from the conditions described above and the substance properties.

5.1.	Human	exposure

Workers (oral)

Workers

(inhalation)

long-term,

systemic,

inhalation 0.05: mg/m³

DNEL: Worker,

Good hygiene practice will minimise oral exposure Inhalation Inhalation						
Process Category	LEV	Duration	PRE	Content (%)	exposure (mg/m3)	RCR
INDUSTRIAL USE OF LIQUID MATERIAL						
7 – Industrial spraying based on TNsG						
(European Commission 2002)	No	Up to 6	95%	10	0.325	6.5
10 – Roller application or brushing	No	4 to 8	No	5 to 25	0.125	2.5
13 – Treatment of articles by dipping and pouring	No	4 to 8	No	5 to 25	0.147	2.94

The modelled long-term exposure concentrations are compared to the DNEL for chronic inhalation exposure to obtain risk characterization ratios. RCRs above 1 indicate that the potential risk is not adequately controlled. Safe conditions of use are described in exposure scenario 5. Safe conditions for additional activities are shown in the table below Safe conditions were defined by considering that workers use personal respiratory equipment during industrial spraying to protect themselves against elevated airborne concentrations of coatings or paints. Alternatively, safe conditions may also be achieved by ensuring very good ventilation of the workplace. The use of articles made from rubbers or plastics containing the substance is considered safe as no release of kieselguhr, flux-calcined is anticipated. It is concluded that the industrial use of mixtures containing kieselguhr, flux-calcined is safe for workers under the specified conditions of exposure.

Safe conditions for industrial activities performed during the use of mixtures containing kieselguhr, flux-calcined

The modelled long-term exposure concentrations are compared to the DNEL for chronic inhalation exposure to obtain risk characterization ratios. RCRs above 1 indicate that the potential risk is not adequately controlled. Safe conditions of use are described in the table above. Safe condition was defined by considering that workers use personal respiratory equipment during non-industrial spraying to protect themselves against elevated airborne concentrations of coatings or paints. Alternatively, safe conditions may also be achieved by ensuring very good ventilation of the workplace. The reasonable worst-case airborne concentration of the substance resulting from professional cleaning was 1.86E-05 mg/m³. The RCR obtained by comparing this concentration of the long-term inhalation DNEL of 0.05 mg/m³ is 3.7E-04 showing that the potential health risk for workers is controlled for the professional use of cleaners. The use of articles made from rubbers or plastics containing the substance is considered safe as no release of kieselguhr, flux-calcined is anticipated. It is concluded that the professional use of mixtures containing kieselguhr, flux-calcined is safe for workers under the specified conditions of exposure.

						Inhalation exposure	
	Process Category	LEV	Duration	PRE	Content (%)	(mg/m3)	RCR
	PROFESSIONAL US	E OF SOLI	D MATERIAL	WITH MED			
	2 – Use in closed, continuous						
	process with occasional controlled exposure	750/	4 + 0 9	No	100	0.25	5.0
	3 – Use in closed batch process	75%	4 to 8	No	100	0.25	5.0
	(synthesis or formulation)	75%	4 to 8	No	100	0.25	5.0
	4 – Use in batch and other	, 0, 0			100	0.20	0.0
	process (synthesis) where						
	opportunity for exposure arises	95%	4 to 8	No	100	0.25	5.0
	5 – Mixing or blending in batch						
	processes (multistage and/or						
	significant contact)	95%	4 to 8	No	100	0.25	5.0
	8a – Transfer of chemicals from/to vessels/ large						
	containers at non dedicated						
	facilities	95%	4 to 8	No	100	0.25	5.0
	8b – Transfer of chemicals						
	from/to vessels/ large						
	containers at dedicated						
	facilities	95%	4 to 8	No	100	0.25	5.0
	9 – Transfer of chemicals into						
	small containers (dedicated filling line)	95%	4 to 8	No	100	0.25	5.0
	19 – Hand-mixing with intimate	93%	4 10 0	NU	100	0.25	5.0
	contact (only PPE available)	95%	4 to 8	No	100	0.25	5.0
			USE OF LIQU			0.25	5.0
	2 – Use in closed, continuous						
	process with occasional						
	controlled exposure	No	4 to 8	No	5 to 25	0.15	3.0
	3 – Use in closed batch process						
	(synthesis or formulation)	No	4 to 8	No	5 to 25	0.15	3.0
	4 – Use in batch and other						
	process (synthesis) where opportunity for exposure arises	No	4 to 8	No	5 to 25	0.15	3.0
	5 - Mixing or blending in batch	NO	4100	NO	5 10 25	0.15	5.0
	processes (multistage and/or						
	significant contact)	No	4 to 8	No	5 to 25	0.15	3.0
	8a – Transfer of chemicals						
	from/to vessels/ large						
	containers at non dedicated				5 1 25	0.45	
	facilities	No	4 to 8	No	5 to 25	0.15	3.0
	8b – Transfer of chemicals from/to vessels/ large						
	containers at dedicated						
	facilities	No	4 to 8	No	5 to 25	0.15	3.0
	9 – Transfer of chemicals into	-		-		-	-
	small containers (dedicated						
	filling line)	No	4 to 8	No	5 to 25	0.15	3.0
	10 – Roller application or						
	brushing	No	4 to 8	No	5 to 25	0.125	2.5
	11 – Nonindustrial spraying						
	based on TNsG (European Commission 2002)	No	lin to 6	95%	10	0.325	6.5
	13 – Treatment of articles by	No	Up to 6	95%	10	0.320	C.0
	dipping and pouring	No	4 to 8	No	5 to 25	0.15	3.0
	15 – Use of laboratory reagents					5.20	0.0
	in small scale laboratories	No	4 to 8	No	5 to 25	0.15	3.0
	19 – Hand-mixing with intimate						
	contact (only PPE available):						
	modelled with ConsExpo	No	8	No	10	0.0002	0.004
rkers rmal)	Dermal exposure was not as	sessed,	as no risks	are antio	ipated with de	ermal expos	ure.
rect exposure	No indirect exposure of hum	ans to 1	laceloubr	flux-colo	ined is anticing	hated	
	No munect exposure of num		deseiguni,	HUX-COIC	neu is anticipa	aleu.	
the ·							
ironment							

Material Safety data Sheet for kieselguhr, flux-calcined (RCS < 1 %) – November 2010 Annex I - Exposure Scenario Page 21/22

exposure	as long-term exposure	in the case of use of pair	nts and cleaning produ	ucts and as short-	ter				
(inhalation)	as long-term exposure in the case of use of paints and cleaning products and as short-terr exposure in the case of spray painting and use of filtration materials. The long-term and acut								
	airborne concentrations of the substance for the different uses are given in the table below. The								
DNEL: Consumer,	RCRs for all consumer uses resulting in long-term exposure to the substance are well below.								
ong-term,	indicating that potential health risks for consumers are adequately controlled. Spray paintin								
systemic,	may result in relatively high acute exposure to kieselguhr, flux-calcined and should be performed								
nhalation	only in well-ventilated areas. It is recommended that particles of the substance used in spra								
0.05: mg/m³	paints available to consumers exhibit diameters greater than 0.015 mm. As particles with large								
	diameters generally are	e not inhaled this helps to a	void elevated consume	er exposure to part	ticle				
	of kieselguhr, flux-calcined during spray painting. The use of articles made from rubbers of								
	plastics containing the substance is considered safe as no release of kieselguhr, flux-calcined i anticipated. It is concluded that the potential health risks for consumers are adequately for the								
	uses of the substance d	escribed in the present expo	osure scenario.						
	Consumer use	Mean inhalation	Mean inhalation	RCR					
		concentration (long-term) in mg/m ³	concentration (acute) in mg/m ³						
	Use of high-solid	0.000122							
	paints	0.000122		0.0024					
	Use of water-based	0.000186							
	paints			0.0037					
	Use of solvent-based	0.000864							
	paints			0.0173					
	Use of water-based	0.00044		0.0000					
	wall paints	Natavaliashla	27 5	0.0088					
	Spray painting (trigger cans)	Not applicable	37.5	Not applicable					
	Spray painting	Not applicable	0.676	Not applicable					
	(pneumatic sprayer)		0.070	Not applicable					
	Filtration material	Not applicable	0.14	Not applicable					
	Cleaning products	0.00002		0.0004					
5.2. Environmenta	l ave acura (avalitativa a	cooccertont)							
	n exposure (quantative a	ssessment							
		-	of drinking and swim	ming nool water	ar				
Wastewater	Kieselguhr, flux-calcine	ed used for the filtering of	-						
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine	ed used for the filtering of ed present in surface clea	aners may be release	ed to the sewer	ar				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mu	ed used for the filtering of present in surface clear unicipal sewage treatment p	aners may be release lant (STP). As the tonna	ed to the sewer ages of kieselguhr,	ar flu				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mu calcined for these uses	ed used for the filtering of ed present in surface cleat unicipal sewage treatment p are not known, a worst-ca	aners may be release lant (STP). As the tonna se is considered in the	ed to the sewer ages of kieselguhr, present assessme	ar flu ent				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mu calcined for these uses that 10% of the total	ed used for the filtering of ad present in surface clear unicipal sewage treatment p are not known, a worst-ca tonnage placed on the EL	aners may be release lant (STP). As the tonna se is considered in the J market ends up in 1	ed to the sewer ages of kieselguhr, present assessme municipal STPs du	ar flu ent ue f				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mu calcined for these uses that 10% of the total industrial, professional	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca tonnage placed on the EL and private use of mixtures	aners may be release lant (STP). As the tonna se is considered in the J market ends up in a containing the substar	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nce and not covere	ar flu ent ue f ed b				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mu calcined for these uses that 10% of the total industrial, professional other exposure scenari	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-car tonnage placed on the EL and private use of mixtures tos. The total EU tonnage is	aners may be release lant (STP). As the tonna se is considered in the J market ends up in 1 containing the substar 5 120,000 tonnes per y	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nce and not covere ear resulting in 12	ar flu ent ue f ed k 2,00				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mi calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr,	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca tonnage placed on the EL and private use of mixtures fos. The total EU tonnage is flux-calcined released to n	aners may be release lant (STP). As the tonna se is considered in the J market ends up in 1 containing the substar s 120,000 tonnes per y nunicipal STPs in the	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nce and not covere ear resulting in 12 present scenario.	ar flu ent ue f ed k 2,00 Th				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mu calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca tonnage placed on the EL and private use of mixtures fos. The total EU tonnage is flux-calcined released to n buted over the EU as disper	aners may be release lant (STP). As the tonna se is considered in the J market ends up in 1 containing the substar 120,000 tonnes per y nunicipal STPs in the sive use of mixtures co	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nce and not covere ear resulting in 12 present scenario. Intaining the subst	ar flu ent ied k 2,00 Th cano				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mi calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The	ed used for the filtering of a present in surface clear unicipal sewage treatment p are not known, a worst-ca tonnage placed on the EU and private use of mixtures tos. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500	aners may be release lant (STP). As the tonna se is considered in the J market ends up in a containing the substar 5 120,000 tonnes per y nunicipal STPs in the sive use of mixtures co million inhabitants. T	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nee and not covere ear resulting in 12 present scenario. Intaining the subst he average volum	ar flu ent ed k 2,00 Th cano				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mic calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabi	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-car tonnage placed on the EL and private use of mixtures ios. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per	aners may be release lant (STP). As the tonna se is considered in the J market ends up in a containing the substar 5 120,000 tonnes per y nunicipal STPs in the sive use of mixtures co million inhabitants. T	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nee and not covere ear resulting in 12 present scenario. Intaining the subst he average volum	ar flu ent ed k 2,00 Th cano				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mi calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-car tonnage placed on the EL and private use of mixtures ios. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per	aners may be release lant (STP). As the tonna se is considered in the J market ends up in a containing the substar 5 120,000 tonnes per y nunicipal STPs in the sive use of mixtures co million inhabitants. T	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nee and not covere ear resulting in 12 present scenario. Intaining the subst he average volum	ar flu ent ed k 2,00 Th cano				
Wastewater treatment plants (WWTP)	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mu calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabir municipal STP can then	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca tonnage placed on the EL and private use of mixtures fos. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per be calculated as:	aners may be release lant (STP). As the tonna se is considered in the J market ends up in r containing the substar 120,000 tonnes per y nunicipal STPs in the sive use of mixtures co million inhabitants. T r day (EUSES default).	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nce and not covere ear resulting in 12 present scenario. Intaining the subst he average volum The concentration	ar flu ent ed k 2,00 Th cano				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mu calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabir municipal STP can then	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca tonnage placed on the EL and private use of mixtures fos. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per be calculated as:	aners may be release lant (STP). As the tonna se is considered in the J market ends up in r containing the substar 120,000 tonnes per y nunicipal STPs in the sive use of mixtures co million inhabitants. T r day (EUSES default).	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nce and not covere ear resulting in 12 present scenario. Intaining the subst he average volum The concentration	ar flu ent ed k 2,00 Th cano				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mu calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabir municipal STP can then	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-car tonnage placed on the EL and private use of mixtures ios. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per	aners may be release lant (STP). As the tonna se is considered in the J market ends up in r containing the substar 120,000 tonnes per y nunicipal STPs in the sive use of mixtures co million inhabitants. T r day (EUSES default).	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nce and not covere ear resulting in 12 present scenario. Intaining the subst he average volum The concentration	ar flu ent ed k 2,00 Th cano				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mu calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabir municipal STP can then	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca tonnage placed on the EL and private use of mixtures fos. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per be calculated as:	aners may be release lant (STP). As the tonna se is considered in the J market ends up in r containing the substar 120,000 tonnes per y nunicipal STPs in the sive use of mixtures co million inhabitants. T r day (EUSES default).	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nce and not covere ear resulting in 12 present scenario. Intaining the subst he average volum The concentration	ar flu ent ed k 2,00 Th cano				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mic calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabi municipal STP can then	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca- tonnage placed on the EU and private use of mixtures tos. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per be calculated as: $C_{STP} = \frac{AMOUN}{DAYS \cdot INHAB \cdot T}$	aners may be release lant (STP). As the tonna se is considered in the J market ends up in the containing the substar s 120,000 tonnes per y hunicipal STPs in the sive use of mixtures co million inhabitants. The day (EUSES default). $\frac{VT_{STP}}{WASTEW_{inhab}}$, where	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nee and not covere ear resulting in 12 present scenario. ontaining the subst he average volum The concentration	ar flu ent ied k 2,00 Th cano ne o n in				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mu calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabi municipal STP can then	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca tonnage placed on the EU and private use of mixtures tos. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per be calculated as: $C_{STP} = \frac{AMOUN}{DAYS \cdot INHAB}$	aners may be release lant (STP). As the tonna se is considered in the J market ends up in re- containing the substar s 120,000 tonnes per y hunicipal STPs in the sive use of mixtures co million inhabitants. T r day (EUSES default). T_{STP} , where $WASTEW_{inhab}$, where	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nee and not covere ear resulting in 12 present scenario. ontaining the subst he average volum The concentration	ar flu ent ied k 2,00 Th cano ne o n in				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mic calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabi municipal STP can then AMOUNT _{STP} : an	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca- tonnage placed on the EU and private use of mixtures ios. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per be calculated as: $C_{STP} = \frac{AMOUN}{DAYS \cdot INHAB \cdot T}$ nount of kieselguhr, flux-calc ear (1.2E13 mg/year),	aners may be released lant (STP). As the tonna se is considered in the J market ends up in a containing the substar is 120,000 tonnes per y nunicipal STPs in the sive use of mixtures co million inhabitants. T r day (EUSES default). VT_{STP} , where $WASTEW_{inhab}$, where cined released to munic	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nee and not covere ear resulting in 12 present scenario. ontaining the subst he average volum The concentration	ar flu ent ied k 2,00 Th cano ne o n in				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mu calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabi municipal STP can then AMOUNT _{STP} : an y DAYS : nu	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca- tonnage placed on the EU and private use of mixtures ios. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per be calculated as: $C_{STP} = \frac{AMOUN}{DAYS \cdot INHAB \cdot}$ nount of kieselguhr, flux-calc ear (1.2E13 mg/year), imber of release days (365 d	aners may be release lant (STP). As the tonna se is considered in the J market ends up in the containing the substar s 120,000 tonnes per y nunicipal STPs in the sive use of mixtures co million inhabitants. T r day (EUSES default). VT_{STP} , where $VASTEW_{inhab}$, where cined released to munic lays/year),	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nee and not covere ear resulting in 12 present scenario. Intaining the subst he average volum The concentration	ar flu ent ied k 2,00 Th cano ne o n in				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mic calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabi municipal STP can then MOUNT y DAYS : nu INHAB : nu	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca- tonnage placed on the EU and private use of mixtures ios. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per be calculated as: $C_{STP} = \frac{AMOUN}{DAYS \cdot INHAB \cdot T}$ nount of kieselguhr, flux-calc ear (1.2E13 mg/year),	aners may be release lant (STP). As the tonna se is considered in the J market ends up in the containing the substar s 120,000 tonnes per y nunicipal STPs in the sive use of mixtures co million inhabitants. T r day (EUSES default). VT_{STP} , where $VASTEW_{inhab}$, where cined released to munic lays/year),	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nee and not covere ear resulting in 12 present scenario. Intaining the subst he average volum The concentration	ar flu ent ied k 2,00 Th cano ne o n in				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mic calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabi municipal STP can then MOUNT y DAYS : nu INHAB : nu	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca- tonnage placed on the EU and private use of mixtures ios. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per be calculated as: $C_{STP} = \frac{AMOUN}{DAYS \cdot INHAB \cdot}$ nount of kieselguhr, flux-calc ear (1.2E13 mg/year), imber of release days (365 d	aners may be release lant (STP). As the tonna se is considered in the J market ends up in re- containing the substar is 120,000 tonnes per y nunicipal STPs in the sive use of mixtures co million inhabitants. T r day (EUSES default). VT_{STP} , where $VASTEW_{inhab}$, where cined released to munic lays/year), 500 million inhabitants)	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nee and not covere ear resulting in 12 present scenario. Intaining the subst he average volum The concentration	ar flu ent ied k 2,00 Th cano ne o n in				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mic calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabi municipal STP can then $AMOUNT_{STP}$: an y $DAYS$ $DAYS$: nu $WASTEW_{inhab}$ $WASTEW_{inhab}$: wastewate wastewate	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca- tonnage placed on the EU and private use of mixtures ios. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per be calculated as: $C_{STP} = \frac{AMOUN}{DAYS \cdot INHAB \cdot}$ nount of kieselguhr, flux-calc ear (1.2E13 mg/year), umber of release days (365 d umber of inhabitants in EU (5	aners may be release lant (STP). As the tonna se is considered in the J market ends up in re- containing the substar is 120,000 tonnes per y nunicipal STPs in the sive use of mixtures co- million inhabitants. The day (EUSES default). VT_{STP} , where $VASTEW_{inhab}$, where cined released to munic lays/year), 500 million inhabitants) to L/d),	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nce and not covere ear resulting in 12 present scenario. Intaining the subst he average volum The concentration	ar flu ent ied k 2,00 Th cano ne o n in				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mic calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabi municipal STP can thenAMOUNT STP: an y DAYS : nu INHAB WASTEW inhab: wa c sTPC STP: co	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca- tonnage placed on the EU and private use of mixtures tos. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per be calculated as: $C_{STP} = \frac{AMOUN}{DAYS \cdot INHAB \cdot}$ nount of kieselguhr, flux-calc ear (1.2E13 mg/year), umber of release days (365 d umber of inhabitants in EU (5 astewater per inhabitant (20 nocentration of kieselguhr, fl	aners may be release lant (STP). As the tonna se is considered in the J market ends up in the containing the substar s 120,000 tonnes per y hunicipal STPs in the sive use of mixtures co million inhabitants. The day (EUSES default). The VT_{STP} , where $VASTEW_{inhab}$, where cined released to municipal solution inhabitants) to L/d), ux-calcined in municipal	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nee and not covere ear resulting in 12 present scenario. Intaining the subst he average volum The concentration e cipal STPs in the EL , al STP (mg/L).	ar flu ent ied k 2,000 Th cano n in				
Wastewater treatment plants	Kieselguhr, flux-calcine kieselguhr, flux-calcine subsequently pass a mic calcined for these uses that 10% of the total industrial, professional other exposure scenari tonnes of kieselguhr, amount is evenly distri can be assumed. The wastewater per inhabi municipal STP can thenAMOUNT STP: an y DAYS : nu INHAB WASTEW inhab: wa c sTPC STP: co	ed used for the filtering of ed present in surface clear unicipal sewage treatment p are not known, a worst-ca- tonnage placed on the EU and private use of mixtures ios. The total EU tonnage is flux-calcined released to n buted over the EU as disper EU has approximately 500 tant equivalent is 200 L per be calculated as: $C_{STP} = \frac{AMOUN}{DAYS \cdot INHAB \cdot}$ nount of kieselguhr, flux-calc ear (1.2E13 mg/year), imber of release days (365 d imber of inhabitants in EU (500)	aners may be release lant (STP). As the tonna se is considered in the J market ends up in the containing the substar s 120,000 tonnes per y hunicipal STPs in the sive use of mixtures co million inhabitants. The day (EUSES default). The VT_{STP} , where $VASTEW_{inhab}$, where cined released to municipal solution inhabitants) to L/d), ux-calcined in municipal	ed to the sewer ages of kieselguhr, present assessme municipal STPs du nee and not covere ear resulting in 12 present scenario. Intaining the subst he average volum The concentration e cipal STPs in the EL , al STP (mg/L).	ar flu ent ied k 2,000 Th cano n in				

Americantic	$C_{STP} = \frac{1.2E13}{365 \cdot 500000000 \cdot 200} = 0.329 \frac{mg}{L}.$			
Aquatic pelagic compartment	A dilution factor of 10 is considered at the point of mixing of the wastewater with surface water, leading to a surface water concentration of 0.033 mg/L. For coastal areas a dilution factor of 100 is considered, leading to a concentration of 0.0033 mg/L in marine waters.			
Sediments	Kieselguhr is a naturally occurring sedimentary rock consisting of the shells of diatoms which is formed in water bodies and is therefore considered a natural part of the ecosystem. Therefore, no risk is anticipated with kieselguhr, flux-calcined in sediments and no exposure assessment for sediment is carried out.			
Soil and groundwater	If paints containing kieselguhr, flux-calcined are used outdoors small amounts of kieselguhr, flux- calcined may leach to the soil. Further, kieselguhr, flux-calcined may be released to soil via atmospheric deposition and via sewage sludge brought to agricultural fields and grassland. Kieselguhr is a naturally occurring sedimentary rock which is essentially a mineral fraction of soil already. Only the accidental release of a significant quantity kieselguhr, flux-calcined is expected to alter the physical and chemical characteristics of a soil. As leaching from paints and atmospheric deposition to soil is regarded as minor and the deposition of sewage sludge to fields takes place under controlled conditions no risk is anticipated with the release of kieselguhr, flux- calcined to soil from the use described in this scenario and thus, no further assessment of the exposure concentrations in soil is undertaken.			
Atmospheric compartment	Emissions of kieselguhr, flux-calcined into the atmosphere are low during the use of mixtures containing the substances by industrial workers, professionals, or consumers. The atmospheric concentrations of the substance are expected to be low. No further assessment of the exposure concentrations in the atmosphere is undertaken.			
Secondary poisoning	It is expected that emissions of the substance resulting from the industrial, professional, or private use of the substance or mixtures containing the substance will not significantly increase the naturally occurring concentrations of kieselguhr or other compounds in the environment. The potential of kieselguhr, flux-calcined for bioaccumulation is low. The substance has a low solubility in water and thus is essentially unavailable to organisms. Therefore, it is not necessary to assess secondary poisoning via the food chain.			